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Stark-Inbar A, Raza M, Taylor JA, Ivry RB. Individual differences
in implicit motor learning: task specificity in sensorimotor adaptation and
sequence learning. J Neurophysiol 117: 412–428, 2017. First published
November 2, 2016; doi:10.1152/jn.01141.2015.—In standard taxono-
mies, motor skills are typically treated as representative of implicit or
procedural memory. We examined two emblematic tasks of implicit
motor learning, sensorimotor adaptation and sequence learning, asking
whether individual differences in learning are correlated between these
tasks, as well as how individual differences within each task are related
to different performance variables. As a prerequisite, it was essential to
establish the reliability of learning measures for each task. Participants
were tested twice on a visuomotor adaptation task and on a sequence
learning task, either the serial reaction time task or the alternating reaction
time task. Learning was evident in all tasks at the group level and reliable
at the individual level in visuomotor adaptation and the alternating
reaction time task but not in the serial reaction time task. Performance
variability was predictive of learning in both domains, yet the relationship
was in the opposite direction for adaptation and sequence learning. For
the former, faster learning was associated with lower variability, consis-
tent with models of sensorimotor adaptation in which learning rates are
sensitive to noise. For the latter, greater learning was associated with
higher variability and slower reaction times, factors that may facilitate the
spread of activation required to form predictive, sequential associations.
Interestingly, learning measures of the different tasks were not correlated.
Together, these results oppose a shared process for implicit learning in
sensorimotor adaptation and sequence learning and provide insight into
the factors that account for individual differences in learning within each
task domain.

NEW & NOTEWORTHY We investigated individual differences in
the ability to implicitly learn motor skills. As a prerequisite, we
assessed whether individual differences were reliable across test
sessions. We found that two commonly used tasks of implicit learn-
ing, visuomotor adaptation and the alternating serial reaction time
task, exhibited good test-retest reliability in measures of learning and
performance. However, the learning measures did not correlate be-
tween the two tasks, arguing against a shared process for implicit
motor learning.

individual differences; implicit learning; adaptation; sequence learn-
ing; reliability

STUDIES OF MOTOR LEARNING and performance tend to focus on
group-level measures, characterizing the behavior of the “av-
erage” person (Kanai and Rees 2011; King et al. 2012).

Interindividual differences are typically ignored, treated as one
source of “noise” that can be averaged out across the group or
factored out by random group assignments. However, daily life
experience makes it evident that people vary considerably in
their abilities to learn new skills or modify the way in which
they perform a learned skill. Whereas historically the study of
individual differences in skilled performance has been of
considerable interest in the field of human factors (Keele and
Hawkins 1982; Seashore and Tiffin 1930), recent work in
motor learning has tended to ignore this topic. Identifying the
underlying sources of individual differences and the extent to
which they generalize across tasks is critical to the develop-
ment of a comprehensive account of motor learning.

In this report, we take an individual differences approach to
examine implicit motor learning. We focus on two task do-
mains that have been hypothesized to be emblematic of pro-
cedural motor learning, sensorimotor adaptation and sequence
learning. In adaptation studies, the environment is perturbed in
some novel way and the participants learn to adjust their
behavior to minimize the consequences of that perturbation.
For example, in visuomotor rotation tasks, an angular displace-
ment is introduced between movements of the hand and a
cursor and successful performance requires moving the hand in
the opposite direction to counter the perturbation. Sequence
learning has been studied with a range of tasks in which a
series of stimulus-response pairs form a sequence that is either
deterministic (for example, Nissen and Bullemer 1987) or
probabilistic (for example, Howard and Howard 1997), with
learning defined as the difference in reaction time (RT) be-
tween predictable and nonpredictable events.

As suggested by their taxonomic linkage with procedural
learning, adaptation and sequence learning can occur implic-
itly. For example, the perturbation in adaptation studies might
be small and/or introduced in a gradual manner, conditions in
which the participants are unaware of the perturbation (Cris-
cimagna-Hemminger et al. 2010; Kagerer et al. 1997; Michel et
al. 2007; Schlerf et al. 2013; Taylor and Ivry 2012). Similarly,
various manipulations have been devised to reduce or eliminate
awareness during sequence learning, including the use of long
(Pascual-Leone et al. 1993; Sanchez and Reber 2012) or
probabilistic (Howard and Howard 1997; Nemeth et al. 2010)
sequences or the use of a dual-task procedure (Gheysen et al.
2009; Hazeltine et al. 1997; Sanchez et al. 2010). While the
magnitude of learning is reduced under such conditions (Rüs-
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seler and Rösler 2000; Spencer et al. 2006), robust learning is
still observed (Reber and Squire 1994).

Here we examine three issues regarding individual differ-
ences across these two implicit motor learning domains. First,
how do individual differences in motor learning generalize
across tasks? The earliest studies of individual differences
tended to focus on stable or trait-based variability, asking, for
example, whether the abilities of an individual across a wide
range of tasks were related to single construct such as intelli-
gence (for example, Spearman’s “g factor”; Spearman 1904).
Motivated by models of cognition, studies of human perfor-
mance have identified individual differences in the operation of
core components that generalize across task domains (Henry
1968). For example, Keele et al. (1985) showed that individual
differences in temporal precision account for performance
differences across motor and perceptual timing tasks. In a
related vein, sensorimotor adaptation and sequence learning
might entail overlapping processes, because learning in both
tasks entails predictions of spatial events (Keele et al. 1985;
Sanchez et al. 2010; Seidler et al. 2012; Spencer and Ivry 2009)
and both have been associated with cerebellar function (Fer-
rucci et al. 2013; Galea et al. 2011; Seidler 2006). On the other
hand, there are good reasons to expect that learning in these
two task domains might entail very different processes. Com-
putationally, adaptation is assumed to depend on mechanisms
designed to reduce sensory prediction errors (Shadmehr et al.
2010), whereas sequence learning is hypothesized to depend on
associative processes (Kinder et al. 2008; Spencer and Ivry
2009). Even in terms of the cerebellum, adaptation and se-
quence learning may be associated with different cortico-
cerebellar loops (Kelly and Strick 2003; Krienen and Buckner
2009) and cerebellar regions (Bernard and Seidler 2013; Bur-
ciu et al. 2014; Hazeltine et al. 1997; Rabe et al. 2009;
Ramnani et al. 2000; Seidler et al. 2002).

Second, we ask whether individual differences in implicit
motor learning are stable. At the heart of studies of individual
differences is an interest in understanding sources of variabil-
ity. Variability is observed at all levels, be it the expression of
proteins, the firing of neurons, or movements of the body
(Faisal et al. 2008). There is also measurement noise, reflecting
the fact that our measurement tools are imprecise. An impor-
tant distinction can be made between stable and unstable
sources of variability in performance. The latter emerges from
the specific conditions at the time of measurement (for exam-
ple, random noise, fatigue, attentiveness), which tend to aver-
age out with repetitions. The former, on the other hand, refers
to stable characteristics of the system, and measurements of
these sources of variability should be relatively consistent over
test sessions. The reliability of our measurements (namely,
consistency over repeated tests) limits the ability to infer the
relationships between variables, because the size of the corre-
lation between two variables is limited by the reliability of
either (or both) of the variables (Gulliksen 2013).

Surprisingly, we are not aware of any studies that have
examined the reliability of measures of implicit motor learning.
Studies that tested people over multiple days have focused on
consolidation (off-line learning), using the same task and
stimulus parameters to look at retention of learning from one
session to the next (Doyon et al. 2009; Krakauer 2009; Meier
and Cock 2014; Nemeth et al. 2010; Spencer et al. 2006;
Zarahn et al. 2008). Not only do these studies rarely discuss the

reliability of individual differences across days, but also the
consolidation design limits the ability to draw inferences about
reliability (namely, individual differences in off-line consoli-
dation will introduce variation in the estimates of learning
across sessions). Given these concerns, we designed our study
such that each participant was tested twice on each task,
employing variants that should minimize any contribution
(savings or interference) from the initial test session to the
second test session. We employed conditions in which aware-
ness was absent or minimized, ensuring that learning was
entirely implicit. In this manner, we can ask if individual
differences in each task are stable or unstable across repeated
measurements, a prerequisite for examining factors that ac-
count for individual differences in performance.

Third, we used an individual differences approach to exam-
ine how variability contributes to, and constrains, skill acqui-
sition. We often think of variability as an unwanted feature that
interferes with learning and performance (Faisal et al. 2008;
Wu et al. 2014). This perspective is formally captured in
models such as the one offered by a Kalman filter within the
framework of Bayesian estimation. For example, as sensory
noise increases (e.g., when the position of a cursor indicating
hand position is artificially blurred), the learning rate decreases
(Burge et al. 2008; Wei and Körding 2010). Theories of
optimal control posit that actions are planned to minimize the
impact of variability on performance (Kording et al. 2007;
Körding and Wolpert 2004). In this framework, part of skill
acquisition entails a reduction in variability. Alternatively,
movement variability can also be seen as a signature of
exploration, allowing the system to gather knowledge concern-
ing new or unstable environments (Ishii et al. 2002; Sutton and
Barto 1998). In this view, an increase in variability might come
about from a propensity to explore. It is also possible that
causation is reversed, such that high variability increases the
likelihood that the system will explore new associations. We
sought to identify factors that might account for individual
differences in learning on these two tasks, focusing on mea-
sures of performance variability that were obtained outside the
learning context or early during learning, asking how differ-
ences in variability might impede or enhance learning (Wu et
al. 2014).

METHODS

Participants

A total of 123 neurologically healthy young adults were recruited
through the Research Participant Pool at the University of California,
Berkeley (63% women; age 21.2 � 2.4 yr). All were right-handed as
assessed by the Edinburgh Handedness Inventory (0.83 � 0.19, where
�1 is strictly left-handed and 1 is strictly right-handed). Participants
received course credit for completing the study. The protocol was
approved by the University of California, Berkeley institutional re-
view board.

Experimental Tasks

There were three experimental tasks, one used as a measure of
sensorimotor adaptation and the other two measured sequence learn-
ing. Participants were tested twice on each task, in two runs. Runs
were completed either in separate sessions (at least 2 days apart) or
during the same session [serial reaction time (SRT) task only; after a
10- to 15-min break].
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Visuomotor adaptation task. Participants made center-out reaching
movements to visually displayed targets, sliding a digitizing stylus
with their right hand across a digitizing tablet (33 cm � 20 cm;
Wacom Technology Corporation). Movement trajectories were re-
corded by sampling the stylus tip at 100 Hz with customized
software, written in Python (www.python.org). The visual stimuli
were displayed on a 15-in. monitor oriented in the normal upright
position. The tablet was oriented horizontally and positioned below
a wooden box that occluded vision of the arm. To provide feed-
back, a small white cursor (4-mm diameter) was displayed on the
screen to indicate the position of the stylus. The system was
calibrated such that there was a 1:1 correspondence between the
movement distance of the stylus and the displacement distance of
the feedback cursor on the screen.

To begin each trial, a circle (5-mm diameter) appeared at the center
of the monitor, indicating the start position. Participants moved the
stylus to center the feedback cursor within the start position. After
participants held this position for 500 ms, four circles appeared. The
radial distance from the start circle to each of the four circles was 8
cm. The circles were separated by 30°, forming a virtual arc on the
upper part of the monitor (locations 45°, 75°, 105°, and 135°,
where 90° is directly above the starting position). Three of the
circles were colored blue (5-mm diameter), and one, the target, was
colored white and was slightly larger (8 mm).

Participants were instructed to reach to the target “as fast and as
accurate” as possible. The start circle disappeared when the move-
ment amplitude exceeded 1 cm. Online visual feedback, by means
of the feedback cursor, was presented while the participant reached
outward toward the target. The trial ended when the participant
intersected the target. At that moment, the target turned green and
auditory feedback was provided, based on movement speed. If the
movement time (MT) was �500 ms, a pleasant high-pitch “ding”
sound was played. If MT exceeded this time criterion, an unpleas-
ant low-pitch “buzz” sound was played. Notably, RT was not

emphasized; the auditory feedback was based solely on MT. The
cursor end-point position, defined at the point where the reach
amplitude crossed 8 cm, was displayed for 500 ms.

At the end of the feedback interval, the cursor and four circles
disappeared and the start circle reappeared. The participant was
visually guided back to the starting location with radial feedback, a
white circle with a diameter that corresponded to the distance of the
hand from the starting position (namely, providing no information on
hand angle). The participant was instructed to move so as to reduce
the diameter of this circle. When the hand was within 1 cm of the start
position, the circle changed to a cursor and the participant moved the
cursor into the start location. When this position was maintained for
500 ms, the next target appeared.

Participants were briefly introduced to the task with a short training
block of 24 trials, six reaches to each of the four possible target
locations. The experimental session consisted of 640 trials, divided
into six blocks (Fig. 1A). The first block (Baseline1) consisted of 40
trials in which the mapping between hand position and cursor position
was veridical. In the second block (240 trials, Rotate1) a pseudoran-
dom walk visuomotor perturbation was imposed by rotating the
position of the feedback cursor with respect to the true position of the
hand (see below). After the end of the rotation block, the participant
completed a third block consisting of 40 trials with veridical feedback
(Wash1). The participant was then given a short break before repeat-
ing each of the three blocks for the second time (Baseline2, Rotate2,
Wash2). The task transitioned smoothly between blocks without
indicating the change between blocks to the participants. The order of
target locations was pseudorandom, such that each target location was
used twice every eight trials, avoiding successive repetitions of each
location. The 640-trial run took �35 min to complete.

During the rotation blocks, the perturbation of the visual feedback
followed a global sinusoidal pattern with local jitter (modified from
Cheng and Sabes 2006), increasing or decreasing by 1–2° on each
trial. The maximum rotation was 12° in either the clockwise or

Fig. 1. Experimental tasks. A: visuomotor adaptation
(VMA) task. The perturbation followed a pseudoran-
dom walk of a global sinusoidal pattern. B: serial
reaction time (SRT) task. On Random blocks (R) the
stimulus positions were selected randomly, and on Se-
quence blocks (S) the stimulus positions followed a
repeating 12-element sequence. C: alternating serial
reaction time (ASRT) task. Odd-numbered elements
follow a fixed sequence, and even-numbered elements
are selected at random (r). This creates high- and low-
frequency triplets (see text).
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counterclockwise direction, with the cycle spanning 80 trials (Fig.
1A). In terms of actual distance on the screen, a displacement of 1°
corresponded to 0.14 cm. We chose to use small trial-to-trial changes
in the size of the rotation along with a maximum rotation size of only
12° (corresponding to 1.67-cm displacement) to minimize awareness
of the perturbation (Cheng and Sabes 2007; Schlerf et al. 2013).

Participants completed the visuomotor adaptation (VMA) task
twice, with each run performed on different days. Two different
versions of the task were created by varying the local jitter of the
perturbation and the order of the target locations. A different version
was used for each of the two runs.

Serial reaction time task. We employed a version of the SRT task
that is designed to minimize the contribution of explicit learning (for
example, Robertson 2007; Spencer and Ivry 2009). Four horizontal
lines (3.5 cm, with 1.5-cm edge-to-edge spacing) were continuously
displayed on the monitor throughout the experiment. At the start of
each trial, an “X” symbol (1.8 � 2 cm) appeared above one of the
lines. Participants were instructed to press the spatially compatible
key as fast as possible. Responses were made with one of four fingers
of the right hand, with the fingers positioned on the V, B, N, and M
keys on a standard computer keyboard. The target stimulus disap-
peared 100 ms after the participant pressed a key (either the correct
key or a wrong key), or after an interval of 2,000 ms if no key press
was detected. Once the target disappeared, a 100-ms intertrial interval
was initiated, followed by the presentation of the next stimulus.

The experimental run consisted of 1,260 trials, organized into 15
blocks of 84 trials each. The task transitioned smoothly between
blocks without indicating the change between blocks to the par-
ticipants. There were two types of blocks, Random or Sequence.
On Random blocks, the stimuli were selected randomly with the
constraints that the stimulus did not appear at the same location on
successive trials (for example, 2-2 or 4-4) and did not form
three-element trills (for example, 1-3-1 or 2-4-2) or three-element
runs (for example, 1-2-3 or 4-3-2) and that each stimulus appeared
three times every 12 trials. On Sequence blocks, the stimuli fol-
lowed a repeating 12-element deterministic sequence (repeating 7
times/block). Two sequences were created (SeqA: 241342314213,
SeqB: 312413421324). The second sequence was created by shift-
ing each element of the first by one position, with position 4
becoming position 1. On the basis of past work, we expected that
a 12-element sequence would minimize awareness (Pascual-Leone
et al. 1993; Spencer and Ivry 2009). We opted not to use a
dual-task procedure as a way to minimize awareness because
participants vary in how they allocate attention between the se-
quence learning and secondary tasks, making it difficult to asso-
ciate individual differences to sequence learning per se. Blocks 1,
7, 13, and 15 were Random blocks, and the other 11 blocks were
Sequence blocks (Fig. 1B). Overall, it took �15 min to complete
the 1,260 trials, including a short break provided after block 8.
Participants completed two 1,260-trial runs, with different se-
quences (SeqA or SeqB) used in each run.

Alternating serial reaction time task. As described in RESULTS, the
SRT task proved to be problematic for a study of individual differ-
ences given that within-subject measures of learning showed low
reliability. As such, we switched to a different assay of implicit
sequence learning, the alternating serial reaction time (ASRT) task
(Howard and Howard 1997; Janacsek et al. 2012; Remillard 2008).
Unlike the deterministic SRT task, the ASRT task involves a proba-
bilistic second-order grammar in which odd-numbered elements fol-
low a fixed sequence and even-numbered elements are selected at
random.

The ASRT task used stimulus-response mapping similar to the SRT
task (Howard and Howard 1997; Janacsek et al. 2012; Nemeth et al.
2010). Four empty circles (1.5-cm diameter, with 2.5-cm edge-to-
edge spacing) were continuously displayed on the computer monitor
throughout the experiment. The stimulus on each trial was a dog’s
head that appeared over one of the circles (2-cm diameter; Nemeth et

al. 2010). Participants had to press the spatially compatible response
key as fast as possible. Responses were made with the four fingers of
the right hand, with each finger mapped to one key on a keyboard
(keys V, B, N, and M). The trial ended after the correct key was
pressed; thus if the wrong key was pressed, the stimulus remained
presented until its associated key was pressed. The target stimulus
disappeared immediately after the correct key was pressed, replaced
by an empty circle. This initiated a 120-ms intertrial interval before
the onset of the next stimulus.

The stimuli followed an eight-element sequence of the structure
1r2r3r4r where the four odd-numbered elements follow a fixed se-
quence (1-2-3-4 in this example) and the even-numbered elements
(indicated by r in this example) were selected at random (Fig. 1C). For
each participant, the four fixed elements were randomly mapped to the
four stimulus locations, and the only constraint on the random ele-
ments was that they were chosen with equal probabilities (allowing
successive elements, trills, and runs). The experimental session con-
sisted of 45 blocks of 85 trials each (3,825 trials in total). The first five
stimuli in each block were selected at random and were not included
in the analysis. The eight-element sequence was then repeated 10
times for each block. At the end of each block, the participant received
feedback on the screen, indicating mean RT and overall accuracy. The
task took �60 min to complete.

Procedure

We present the results in terms of four groups, based on the tasks
that the participants completed. Group 1 (n � 38) were tested on the
VMA task twice, with a break of 2–5 days between the sessions.
These participants were also tested on a reaching version of the SRT
task (Spencer and Ivry 2009). However, we did not observe consistent
sequence learning with this task, either at the group level or at the
individual level, and thus we do not report these data here. This led us
to switch to the keyboard variants of the SRT tasks (as described
above). Group 2 (n � 23) were tested only on the keyboard SRT task,
with the task repeated twice within a single session. Groups 3 and 4
completed both a sensorimotor adaptation task and a sequence-
learning task. Group 3 (n � 37) were tested on the VMA and SRT
tasks, with 17 participants starting with the VMA task and 20
participants starting with the SRT task. The two tasks were repeated
in a separate session with the same order used for each participant.
Group 4 (n � 25) were tested on both the VMA and ASRT tasks, with
all participants first tested on the VMA task. This 2-h session (given
the length of time required for each task) was repeated a second time,
again with a 2- to 5-day break between sessions.

For all groups, the first and second runs with a given task used a
different stimulus pattern. For the VMA task, this meant that the order
of targets and perturbation function differed in the two runs; for the
SRT task, different sequences were used in the two runs. The order of
the two versions of each task was counterbalanced across participants
and days. As noted above, the same grammar was used for all
participants on the ASRT task, although the mapping of the grammar
elements to stimuli/responses was randomly set for each participant,
with the constraint that different mappings were used in the two runs.

At the end of the second run, a questionnaire was administered to
assess the participants’ awareness of the task manipulations, with
separate sets of items used to probe awareness of the VMA and
sequencing tasks. The first question was whether the participant had
noticed any changes over the course of the specified task. For the
second question, the participants were told that there were two groups
and that they should report, using a 7-point Likert scale, which group
they thought they belonged to. For the VMA task, the choices were
between a group for whom the feedback matched the position of the
hand and a group for whom the feedback and hand did not match. For
the sequencing tasks, the choices were between a group for whom the
stimuli were selected at random and a group for whom the stimuli
followed a pattern. The third question tested the participants’ knowl-
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edge of the manipulations in the last run (regardless of their response
to the preceding question). For the VMA task, the participants were
“forced” to judge whether the feedback cursor had been shifted,
relative to hand position, to the left, to the right, or to both directions.
For the sequence learning tasks, the participants were informed of the
length of the sequence (12 for SRT; 8 for ASRT) and asked to
generate, as best as they could, the repeating sequence.

We recognize that there are limitations to the use of postexperi-
mental questionnaires as probes of probe awareness (Howard and
Howard 1997; Perruchet and Amorim 1992). On the basis of previous
research, we were confident that awareness would be low in the VMA
task given the subtle changes in the size and direction of the pertur-
bation from trial to trial, as well as the limited size of the maximum
perturbation (Cheng and Sabes 2007; Schlerf et al. 2013). Similarly,
awareness has been shown to be very low or nonexistent in the ASRT
task because of the insertion of the random elements (Howard and
Howard 1997; Janacsek and Nemeth 2012). In terms of awareness, the
SRT task is more problematic, with performance measures sometimes
providing results that are at odds with postexperimental subjective
reports (for example, Perruchet and Amorim 1992; Shanks et al.
2005). Given this, we also examined performance measures as pos-
sible indicators of awareness in the analysis of the data.

Data Analysis

For each task, we calculated measures of performance, variability,
and learning. The measures were calculated separately for each run,
allowing tests of reliability. When appropriate, we averaged the data
over the two runs to facilitate comparisons between tasks. All data
were analyzed with MATLAB (MathWorks, Natick, MA).

Correlational analyses were performed to evaluate reliability (com-
paring the same measure from 2 different runs) and to compare
different performance measures (comparing 2 measures, each aver-
aged over the 2 runs). Pearson correlation coefficients represent the
strength of the linear dependence between the variables of interest.
We also employed orthogonal (Deming) regression to evaluate the
relationship between variables of interest (Cornbleet and Gochman
1979; Linnet 1993, 1998). Regular least-squares regression as-
sumes that the x-axis variable is noise free and that all of the variance
is confined to the y-axis variable. In contrast, the Deming method is
symmetrical with respect to the two variables, making no assumptions
regarding their dependence or independence, and does not assume the
lack of variance of the variable plotted on the x-axis. This method is
appropriate for the present study because we make no assumptions
about dependence (for example, second run performance is not influ-
enced by first run performance). Thus Deming regression provides the
best estimate of the slope of the relationship between the x and y
variables, based on estimates of noise in both variables.

Visuomotor adaptation task. Using the output from the stylus,
movement trajectories were reconstructed off-line. To minimize the
contribution of online corrections, the initial heading angle was used
as the primary dependent variable. It was calculated as the angle
between a line connecting the center of the start circle and the center
of the target and a line connecting the center of the start circle and the
hand position midway to the target (4 cm from start position). We also
calculated RT and MT. The former was measured as duration from
target onset until the time at which the hand crossed a 1-cm ring
around the center of the starting circle. The latter was measured as the
duration between the reaction time and the time at which the cursor
intersected the target circle.

Trials were discarded when the heading angle was more than �3
SD from the mean heading angle or when MT was more than 3
standard deviations (SDs) longer than the mean MT (calculated per
participant and run). Two percent of the trials were removed on the
basis of these criteria (2.0 � 0.68%, ranging from 0.2% to 4.4% over
participants). We did not exclude data based on the RT data because

the instructions did not emphasize RT. All 100 participants who were
tested on VMA were included in the analysis.

Learning in visuomotor rotation tasks is manifest by changes in
heading angle that counter the direction of the perturbation. As a
global measure of learning, we calculated the cross-correlation be-
tween the sequence of heading angles and the sequence of perturba-
tions across all rotation trials (Rotate1 and Rotate2). We repeated this
calculation by shifting the heading angle time series up to a quarter of
a cycle to identify the lag at which the correlation was largest (based
on goodness of fit).

Our main analysis of the learning data focused on the participants’
learning rate, measured by the trial-by-trial response to the evolving
rotation. We employed a standard state-space model of adaptation
(Cheng and Sabes 2007; Thoroughman and Shadmehr 2000), in which
the internal model (x) of the motor system (in this case heading angle)
is updated at each trial (n � 1) according to a learning rule:

en � xn � rn (1)

xn�1 � xn � B � en (2)

The error (en) experienced at trial n is given by the difference between
the hand heading angle (x) and the rotation (r). The hand heading
angle for the next trial (xn�1) is updated based on the weighted (B)
error on the current trial. Effectively, B is a learning rate, reflecting the
percentage of error that is corrected from trial to trial. As such, large
values of B indicate faster learning. This model was fit to estimate
each participant’s learning rate (B) by minimizing the root-mean-
square (RMS) error between the actual time series of heading angles
and the model output (Eq. 1) with the fminsearch function in
MATLAB. We obtained a single measure of learning for each session
by fitting the data from both the Rotate1 and Rotate2 blocks.

A main question of interest in the present experiment was to assess
individual differences in sensorimotor adaptation and to ask if these
individual differences are related to movement variability. To measure
performance variability that was not contaminated by learning, we
focused on the data from the Baseline1 block. Spatial variability
(sSD), defined as the SD of the heading angles across the Baseline1
block, served as our measure of performance variability for the VMA
task. MT was also taken from the Baseline1 block.

Serial reaction time task. The median RT was calculated for each
block. We used the median rather than mean RT to minimize the
effect of outliers, although the results are similar with either measure.
Only correct trials were used in the analysis. Learning in the SRT task
is defined as the increase in RT on Random blocks following training
with Sequence blocks.

It is important to note that the learning measure for the SRT task is
not based on a trial-by-trial measure but rather involves a comparison
across blocks in which the stimuli are predictable or selected at
random. Our initial plan was to focus on the contrast of learning at the
end of the task (as done in previous SRT studies such as Spencer and
Ivry 2009), comparing the final two Random blocks (blocks 13 and
15) and the final two Sequence blocks (blocks 12 and 14). After
finding that the learning measure defined on the final Random blocks
showed poor reliability (see below), we also defined a second learning
measure (initial learning) based on the Random block included in the
middle of the task, or what we refer to as the midtask probe. Here we
compared the median RT on this Random block (block 7) and the two
adjacent blocks (blocks 6 and 8).

In our analysis of individual differences, we sought to find out
whether variation in SRT learning was related to any performance
variables. To this end, we used measures of RT from blocks 2–4. At
this point in training, we expected learning to be modest. The means
of these RT data were used to estimate basic motor speed and
temporal variability (tSD). For the latter, we took the SD of the RT
data and normalized this by dividing by the mean RT for these blocks.

We did not have data for both runs for 4 of the 60 participants from
the SRT task (1 participant was accidentally tested twice on the same
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sequence; the program did not run properly on the second session for
3 participants). In addition, two participants were excluded from the
final analysis because their RTs increased by 	200 ms on the final
Random blocks compared with the neighboring Sequence blocks (and,
correspondingly, their learning scores were 	3 SDs above the group
mean learning score). We interpreted this as a performance-based
indicator that these participants had developed explicit knowledge of
the sequence during at least one of the testing sessions. Finally, from
the questionnaire data, one participant was fully aware of the se-
quence, recalling the entire sequence, and we thus excluded this
participant from the analysis. In total, the data from 53 participants
were included in the final analysis.

As described above in Procedure, the third questionnaire question
required participants to generate a 12-element pattern, attempting to
produce the sequence employed in the second run. From these data,
we calculated a match index (MI) based on the generation of three or
more successive elements that corresponded to the actual sequence
(Bo et al. 2011; Martini et al. 2013; Reber and Squire 1998; Wilkinson
and Shanks 2004). This composite score MI served as a proxy of
awareness, with scores ranging from 0 (no match) to 1 (full recall).
We calculated the probability of recalling triplets, quartets, and
quintets from the original sequence (for example, SeqA includes
triplets of 241, 413, 134, etc., quartets of 2413, 4134, 1342, etc., and
quintets of 24134, 41342, etc.), comparing this to the probability of
randomly recalling matches (avoiding repetitions). For the latter, the
probabilities of reporting, by chance, a triplet, a quart, and a quint
given 12-element sequences are 0.33, 0.11, and 0.037, respectively.
We gave larger weight to longer sequences, using weights equal to the
length of minisequences. Thus by chance the MI score would be 0.316
(3 � 0.33 � 4 � 0.11 � 5 � 0.037). We did not look for matches
longer than five elements because these matches have minimal impact
on the expected value by chance. The MI scores were calculated for
the second sequence because we assumed that this information, if
available, would be most active at the time of the questionnaire. This
analysis was limited to 52 participants because questionnaire data
were missing from 1 participant.

Alternating serial reaction time task. RTs from correct trials were
grouped over triplets of three sequential trials. Two types of triplets
were created from the data: high-frequency triplets, in which the first
and third elements are sequential elements of the basic sequence, and
low-frequency triplets, in which the first and third elements do not
follow the basic sequence. In the 1r2r3r4r example above (r indicating
random elements), triplets of 1x2, 2x3, 3x4, and 4x1 (x indicating any
possible element, either random or sequence) would occur more often,
either from including two consecutive stimuli of the repeating se-
quence (for example, 132 created from 1r2) or from two consecutive
random elements that, by chance, follow the basic sequence (for
example, the same 132 for a triplet of r3r). By contrast, triplets of 1x3
or 4x2 (for example, 123) would occur less frequently because they
could never be obtained from two consecutive sequence elements.
Rather, they would only occur when an r2r triplet results in a specific
random selection (when the initial and final r are chosen to be 1 and
3, in the above mentioned example). Overall, there were 68% high-
frequency triplets and 32% low-frequency triplets in the experiments
(as in Nemeth et al. 2013).

Following the criterion used in previous studies (Howard and
Howard 1997; Janacsek et al. 2012; Nemeth et al. 2010), and similar
to the restrictions imposed in the SRT task, two kinds of low-
frequency triplets were excluded from our analyses: repetitions and
trills. Elimination of these special triplets assured us that differences
between high- and low-frequency triplets were not confounded by
response patterns that might produce fast RTs.

Sequence learning in the ASRT is calculated by comparing RT for
high-frequency and low-frequency triplets (Janacsek et al. 2012;
Nemeth et al. 2010). The difference between the two types of triplets
was calculated separately for each block by subtracting the median RT
of the high-frequency triplets from the median of the low-frequency

triplets (Nemeth et al. 2010). Note that, unlike the SRT task, learning
in the ASRT is based on a within-block, trial-by-trial measure. To test
for reliability between sessions, we calculated an average learning
value over the entire session (from blocks 4–45).

To relate learning to performance measures, the overall mean and
SD of the RT data were calculated from blocks 2 and 3, again
choosing an early time point where learning should be minimal. We
did not include the block 1 data, given the assumption that the
participants are becoming familiar with the task during this block. As
with the SRT data, we created a normalized measure of temporal
variability (tSD) by dividing the SD of RT during blocks 2 and 3 by
the mean RT of these blocks.

Four of the 25 participants in group 4 were excluded from the final
analysis. The mean RTs for two participants were 	3 SDs from the
group mean, and the temporal variability of the other two participants
was 	3 SDs from the group mean. In total, data obtained from 21
participants were included in the final analysis.

RESULTS

Individual Differences in Visuomotor Adaptation

To look at implicit sensorimotor adaptation, we used a
pseudorandom perturbation of visual feedback cycling, every
80 trials, between 12° clockwise rotation and 12° counterclock-
wise rotation. Overall, there was a group bias as participants
tended to reach in a slightly counterclockwise direction of the
targets in the absence of any perturbation (baseline block), a
pattern that was evident throughout the task. The participants
adapted to the perturbation, modifying their initial heading
angle in a direction opposite the perturbation (Fig. 2A shows
the group average over both runs). In terms of our global
measures of learning (over all participants and runs), the mean
correlation between the perturbation and initial heading was
0.66 � 0.13, and the best fit was obtained when the heading
angle function lagged the perturbation function by 4.9 � 1.5
trials. Note that despite the similar low frequency of the
perturbation and behavior, the high-frequency local jitters
reduced the overall correlation between the graphs. The mean
learning rate, calculated by the state-space model, was 0.13 �
0.04.

Three different groups were tested on the VMA task, differ-
ing in whether they performed this task alone or in combination
with either the SRT or ASRT task. For all three groups, the
VMA task was repeated in two separate runs (on separate
days), with different orders of target locations and perturba-
tions for the two runs. We first assessed whether there were any
differences between groups on our three primary dependent
variables: MT and spatial variability (both calculated from
Baseline1 trials before the visuomotor perturbation was intro-
duced) and learning rate (estimated from the Rotate1 and
Rotate2 trials with the state-space model). For this analysis, we
conducted mixed ANOVAs with the between-subject factor
Group and the within-subject factor Run. In all of the
ANOVAs, there was no effect of Group or Group � Run
interaction (P 	 0.1). In a secondary analysis limited to group
3, where some participants completed the VMA task before the
SRT task and vice versa for others, we confirmed that there
was no effect of order (P 	 0.15), indicating that performance
of the VMA task was unaffected by whether the participants
had first completed the SRT task. Over the three groups, there
was a significant effect of Run on MT (run 1 � 451.9 � 55.1
ms, run 2 � 431.6 � 50.5 ms; P � �0.001) and learning rate
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(run 1 � 0.133 � 0.037; run 2 � 0.120 � 0.040; P � �0.001),
indicating that participants reached faster and learned slower
during the second run. There was no change in spatial vari-
ability across runs (run 1 � 4.6 � 1.1°, run 2 � 4.6 � 1.8°;
P � 0.46).

Our main interest in this study was to explore individual
differences in implicit motor learning. Such questions are
only sensible if our individual measures are reliable over
time. Importantly, even though there was a significant
change in the group means between runs, measures can be
reliable if the rank order of the samples remains approxi-

mately constant. Given that there was no effect of Group, we
can look at this question in a large sample by combining the
100 participants into one group and comparing performance
on the VMA task between the two runs (with minimum
separation of 2 days). As shown in Fig. 2B, reliability was
high for MT (r � 0.77; 95% CI � [0.68, 0.84]), spatial
variability (r � 0.52; 95% CI� [0.36, 0.65]), and learning
rate (r � 0.78; 95% CI � [0.69, 0.85]) (all P � �0.001).
These data demonstrate that there is some stable factor or set
of factors that underlie individual differences in terms of
how the participants reached, as well as in terms of their

Fig. 2. VMA results (n � 100). A: group average response (red, shaded region is group SE) to a gradual perturbation (black). For visualization purposes,
the response function has been flipped, although the actual changes in movement heading were in the opposite direction of the perturbation. B: reliability
of movement time, spatial variability, and learning rate between run 1 and run 2 (circles correspond to individual participants). Baseline movement time
and spatial variability measures are taken from the baseline block. Learning rate is estimated from the model fit of the data from the perturbation blocks.
C: correlations between different measures of performance. In all figures, r and P values represent the strength and significance of the Pearson correlation
coefficients of the linear dependence between the variables of interest. Orthogonal (Deming) regression lines evaluate the relationship between variables
of interest, without making assumptions concerning their dependence or independence.
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ability to respond to a visuomotor perturbation. Note that
while MT was constrained experimentally, there remained
considerable variability in how fast the participants moved
and this remained consistent over runs.

We next looked at the relationship between these three
variables, averaging the scores for the two runs for each
individual (Fig. 2C). There was a trend for MT and learning
rate to be positively correlated (Fig. 2C, center; r � 0.17, P �
0.09, 95% CI � [�0.03, 0.36]), with faster learning associated
with slower movements. However, MT and spatial variability
were not correlated (Fig. 2C, left; r � �0.09, P � 0.35, 95%
CI � [�0.28, 0.10]), indicating, that at least in terms of initial
heading, there was no speed-accuracy trade-off. Importantly,
there was a significant negative relationship between spatial
variability and learning rate (Fig. 2C, right; r � �0.41,
P � �0.001, 95% CI � [�0.55, �0.22]): Participants who
exhibited higher reaching variability during baseline blocks
adapted to the visuomotor rotation at a slower rate.

To examine the influence of awareness on learning, we
looked at the questionnaire data. Because we did not want to
bias participants to expect a perturbation, the questionnaire was
administered only at the end of the second run. The data
indicated that participants had no or minimal awareness of the
visuomotor perturbation. Only a third (38%) of the participants
reported that they “experienced any change in apparatus during
the test session.” When pressed to explain the change, none
described a mismatch of the visual feedback; rather, the par-
ticipants offered a large variety of explanations (for example,
“I became better with practice” or “the distance between the
starting point and end point is becoming longer”). When asked
if they belonged to a no-perturbation (match) or perturbation
(no match) group with a 7-point Likert scale, the mean rating
was 2.5 � 1.6, falling between the “2: Somewhat confident in
match group” and “3: Minimal confidence but expect in match
group” categories (see Fig. 5C). When pressed to indicate
the direction of a “mismatch,” the majority (57.7%) selected
the answer that there was a unidirectional mismatch,
whereas the actual perturbation included both clockwise and
counterclockwise rotations.

To summarize, we observed impressive reliability in mea-
sures of performance and learning on a visuomotor rotation
task. Adaptation to the pseudorandom perturbation was im-
plicit for all participants and faster for those with lower
baseline variability.

Individual Differences in Sequence Learning

Serial reaction time task. To study implicit sequence learn-
ing, we used a 12-element version of the SRT task in which
participants responded to the location of visual stimuli by
pressing spatially compatible keys on a computer keyboard.
Accuracy was relatively high (93% � 7% across participants,
over all blocks). Over all participants and the two runs, there
was a significant increase in RT on the final two Random
blocks, indicative of sequence learning [Fig. 3A, left: 36.1 �
23.6 ms; t-test vs. 0, t(52) � 11.1, P � �0.001]. There was
also an increase in RT for the midtask probe, although to a
smaller extent [11.2 � 22.5 ms; t(52) � 3.6, P � 0.005]. A
similar pattern was evident in the accuracy data (Fig. 3A,
right), with mean increases in error rates of 2.2 � 3.3% and
1.8 � 4.9% in the late and midtask probes, respectively
[t(52) � 4.8, P � �0.001 and t(52) � 2.7, P � 0.01,

respectively]. We note that these learning costs were evident
despite the fact that RT showed only a modest decrease over
the course of the Sequence blocks.

Two groups were tested on the SRT task. One group (group
2) were tested in a single session, completing two runs with
different sequences. The other group (group 3) were tested
over two separate sessions, with each session also including
VMA testing. As with the VMA analysis, we first assessed
whether there were any differences between groups on our
three primary dependent variables: two performance variables,
RT and temporal variability, calculated from the early stages of
the task (blocks 2–4) where we assume learning is relatively
modest, and learning, calculated from the final-task random
probes. These data were analyzed with a set of mixed-design
ANOVAs with the between-subject factor Group and the
within-subject factor Run. In all of the ANOVAs, there was no
effect of Group or Group � Run interaction (P 	 0.34). In an
analysis limited to group 3, there was also no effect of order
(P 	 0.15), indicating that SRT performance was unaffected
by whether the participants had first completed the VMA task.

There was a significant Run effect on RT. Participants
responded faster in the early baseline blocks of run 2
compared with run 1 (run 1 � 373 � 65 ms, run 2 � 343 � 59
ms; P � �0.001). The reduction in RT came at a modest,
nonsignificant cost in accuracy (run 1 � 96.5 � 4.1%, run
2 � 93.5 � 8.1%; P � 0.11) and an increase in variability,
operationalized as the SD of these baseline RTs (divided by
the mean RT), (run 1 � 0.041 � 0.029, run 2 � 0.052 �
0.031; P � 0.05). Learning was comparable for the two runs
(run 1 � 10.1 � 8.3, run 2 � 8.9 � 8.6; P � 0.43). In terms
of sequence-specific learning, participants exhibited faster
RTs for SeqA than for SeqB (SeqA: 44.8 � 33.8 ms, SeqB:
27.3.0 � 28.4 ms, P � 0.005).

In the absence of Group effects, we combined the data from
the 53 participants to assess reliability on the SRT task.
Baseline RTs were reliable across runs (Fig. 3B, left; r � 0.63,
P � �0.001, 95% CI � [0.43, 0.77]). In contrast, our measure
of variability, the SD of these baseline RTs, was not reliable
(Fig. 3B, center; r � �0.12, P � 0.38, 95% CI�[�0.38,
0.15]). Even more striking, the measures of sequence learning
were not reliable when taken at the end of the runs (Fig. 3B,
right; r � 0.07, P � 0.63, 95% CI � [�0.21, 0.33]). Thus,
although we observed consistent learning on this task in the
group analysis, the degree of learning in run 1 was not
predictive of the degree of learning in run 2 on an individual
basis. We also looked at reliability by correlating learning
scores between the sequences, correlating SeqA with learning
scores on SeqB. Here, too, we failed to observe consistency in
terms of individual differences (r � 0.14, P � 0.3, 95% CI �
[�0.14, 0.39]).

There are several reasons why reliability might be poor for our
measure of sequence learning. First, whereas learning in the VMA
task is based on trial-to-trial adjustments, learning in the SRT task
is based on a comparison across blocks. The latter might be more
susceptible to contamination from other factors (for example,
fluctuations across blocks in motivation or fatigue). We return to
this issue below when addressing performance on the ASRT task,
where learning is based on trial-to-trial measures.

Second, a subset of participants may have developed some
degree of awareness in one of the sessions. The cost observed
on Random blocks is much larger when participants are aware
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of the sequence, in large part because they can anticipate the
stimulus (as reflected in RTs � 200 ms and/or in learning
scores 	 200 ms). As such, we would expect a poor correlation
if some participants were aware of the sequence in one run and
unaware in the other. As noted in METHODS, we purged partic-
ipants with high levels of sequence awareness by excluding the
data from the two participants who had learning scores 	 3
SDs of the mean score and the one participant who recalled the
full sequence.

Nonetheless, there may be some graded level of contamina-
tion from awareness. Indeed, the questionnaire data indicated

that participants might have had some awareness of the repeat-
ing sequence, with more than a third (40%) of the participants
agreeing with the statement that they had “experienced any
change in the experiment during the test session.” When asked
to mark their confidence in being assigned to a random group
or a sequence group on a 7-level Likert-scale (Fig. 5C), the
mean rating was 4.17 � 1.85, not significantly different from
“4: Not sure which group” (P � 0.51). We also asked the
participants to recall or make their best guess of the repeating
sequence on run 2. The extent of recall was measured by MI,
ranging from 0 (no match to actual sequence) to 1 (perfect

Fig. 3. SRT results (n � 53). A: group
average of median RT (left) and accuracy
(Acc; right) for run 1 (blue) and run 2 (red).
Shaded areas represent group SE. B: reliabil-
ity of RT, temporal variability, and learning
between the run 1 and run 2 scores. Baseline
metrics of RT and the SD of RT are taken
from blocks 2–4 (early in training). Learning
is calculated from the last 4 blocks (Random
blocks 13 and 15 minus Sequence blocks 12
and 14). C: correlation between different
measures of performance. D: reliability of
learning (left) and correlation of learning and
baseline metrics of learning at the midway
probe (Random block 7 minus Sequence
blocks 6 and 8) (center and right).
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match), with random guessing expected to produce a value of
0.136. The mean MI value over all participants was 0.21 �
0.15, significantly above chance (2-tailed t-test: P � 0.001),
suggesting that the participants had partial awareness of some
segments of the sequence.

The absence of reliable individual differences in SRT learn-
ing, in conjunction with the awareness concern, led us to
examine an alternative measure of learning. In particular, we
reasoned that awareness (as well as factors such as fatigue)
would be less problematic during the initial stages of the
experimental run. As such, we performed a post hoc analysis of
learning using the midtask random probes (see Fig. 1B). As
expected, learning was lower at this initial probe compared
with the late probe [t(52) � 7.74, P � �0.001, between the 2
probes; Fig. 3D]. Interestingly, these initial learning scores
showed modest reliability across runs, despite having a more
restricted range than that observed for the late learning scores
(Fig. 3D, left; learning: r � 0.27, P � 0.05, 95% CI � [0.00,
0.50]). We also observed reliability between the initial and late
stages of learning (r � 0.49, P � 0.005, 95% CI � [0.25,
0.67]), suggesting that despite the possible contamination of
explicit factors on the late learning measure, some aspect of
implicit learning was maintained over the course of the exper-
imental task.

Last, we looked at the relationship between our dependent
variables, averaging the scores for the two runs for each
individual (Fig. 3, C and D). There was no correlation between
RT and temporal variability (Fig. 3C, left; r � �0.15, P � 0.3,
95% CI � [�0.4, 0.13]). Participants who responded faster
during the baseline blocks exhibited greater learning, as indi-
cated by significant negative relationships between the baseline
RT and learning, during both late (Fig. 3C, center; r � �0.45,
P � 0.01, 95% CI � [�0.64, �0.20]) and initial (Fig. 3D,
center; r � �0.58, P � �0.001, 95% CI � [�0.73, �0.36])
stages of the task. There was no correlation between learning
and baseline variability for the late learning probe (Fig. 3C,
right; r � 0.04, P � 0.79, 95% CI � [�0.24, 0.30]), whereas
there was a weak correlation with the initial learning (Fig. 3D,
right; r � 0.31, P � 0.05, 95% CI � [0.05, 0.54]).

In summary, we observed robust learning on the SRT task.
However, when we focused on the traditional measure used in
SRT studies, namely, RT differences between the final Se-
quence and Random blocks, we failed to observe reliable
individual differences: Learning in one run was not predictive
of learning in a second run. This lack of reliability in the
learning scores contrasts with the reliable individual differ-
ences in mean RT. We suspect that two factors contribute to
the lack of reliability. First, SRT learning is based on compar-
ing RTs across blocks, and various factors can produce con-
siderable variation in RT across blocks. Second, the late probes
might be contaminated by awareness. Consistent with these
explanations, we did observe a modest degree of reliability
when the analysis was limited to the initial probe. Moreover,
the extent of learning at this earlier probe was higher for
participants who responded more slowly and exhibited larger
variability in the early stages of the task.

Alternating serial reaction time task. Given the concerns
with the SRT task, we opted to use the ASRT task as a different
way to assay sequence learning. One major advantage of the
ASRT is that learning is calculated continuously from each
triplet of trials (see METHODS). Moreover, as reported in previ-

ous studies, learning in the ASRT task appears to be com-
pletely implicit (for example, Howard and Howard 1997;
Janacsek et al. 2012; Nemeth et al. 2010). Only a single group
was tested on the ASRT task, with each participant performing
the task on two separate sessions. Accuracy was reasonably
high in this task (90 � 3% across participants).

We observed robust improvements in performance on the
ASRT task (Fig. 4A). Overall, RTs became faster over the
successive blocks, and there was a substantial overall reduction
in RT on run 2 compared with run 1. In terms of sequence
learning, we focus on the comparison of RTs to high- and
low-frequency triplets. Sequence learning was evident in both
runs. In separate repeated-measures ANOVAs, the effect of
Triplet Type (high vs. low) was significant for both run 1
(P � �0.001) and run 2 (P � �0.001). The effect of Block
was only significant for the run 1 data (run 1: P � �0.001; run
2: P � 0.28). However, the Triplet Type � Block interaction
was significant on both runs (run 1: P � 0.001; run 2: P �
0.05), reflective of the fact that the difference between the
high- and low-frequency triplets increased over the test ses-
sion, indicative of learning.

As can be seen in Fig. 4, the participants were much faster
in the second run. This performance difference was evident
in blocks 2 and 3, which serve as our proxy for baseline
performance where sequence learning is assumed to be low.
Not only were RTs faster in run 2 compared with run 1 (run
1 � 379.7 � 40.0 ms, run 2 � 345.3 � 26.4 ms;
P � �0.001) but variability was also lower in these blocks
(run 1 � 0.192 � 0.034, run 2 � 0.174 � 0.034 ms; P �
0.001). Mean sequence learning across the run (see METH-
ODS) was also lower in run 2 (run 1 � 14.4 � 7.3, run 2 �
10.1 � 5.5; P � 0.01).

We next turned to our assessment of reliability (Fig. 4B). In
terms of baseline measures of performance, individual differ-
ences in mean RT and temporal variability were reliable across
runs (RT: r � 0.64, P � 0.005, 95% CI � [0.29, 0.84]; tSD:
r � 0.51, P � 0.02, 95% CI � [0.096, 0.77]). Learning on the
ASRT was also reliable (RT: r � 0.46, P � 0.04, 95% CI �
[0.04, 0.74]). As can be seen in Fig. 4B, right, most of the data
points fall below the unity line, reflective of the fact that
learning was lower on run 2 compared with run 1. Nonetheless,
participants who showed higher levels of learning on run 1
tended to show higher levels of learning on run 2. This
correlation is especially impressive given the very modest level
of learning (and thus restricted range) on the ASRT.

Given that individual differences in probabilistic se-
quence learning are reliable, we can ask whether these
differences are related to baseline performance measures
(Fig. 4C). First, we observed a trend for a positive correla-
tion between RTs and temporal variability, a pattern that is
in the opposite direction to that observed for the SRT task
(Fig. 3C, left; RT: r � 0.41, P � 0.06, 95% CI � [�0.03,
0.72]). Also in contrast to the SRT task, we observed a trend
for a positive correlation between RT and learning with the
ASRT task: Better learning was associated with slower RTs
(Fig. 4C, center; RT: r � 0.42, P � 0.05, 95% CI � [�0.01,
0.72]). There was also a positive correlation between se-
quence learning and temporal variability: Better learning
was associated with higher variability (Fig. 4C, right; RT:
r � 0.56, P � 0.01, 95% CI � [0.17, 0.80]), a result
consistent with that observed in the initial probe data for the
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SRT task. We note that in the ASRT task high temporal
variability could reflect a difference in RT between high-
and low-frequency triplets, a difference that is accentuated
in good learners. However, the positive correlation is also
observed when the analysis is performed separately for the
high and low triplets (high: r � 0.52, P � 0.05; low: r �
0.57, P � 0.01).

Analysis of questionnaire data (Fig. 5C) indicated that par-
ticipants were not aware of the presence of a repeating prob-
abilistic sequence. Only a third (33%) of the participants
reported that they “experienced any change in the experiment
during the test session.” From the Likert scale, participants
were more likely to judge that they had been in the random (no
sequence) group (2.62 � 1.32).

To summarize, we observed impressive reliability in mea-
sures of performance and learning on probabilistic sequence
learning. Learning the probabilistic sequence was implicit for
all participants and higher for those with slower baseline RTs
and higher baseline variability.

Individual Differences Across Tasks

The participants in groups 3 and 4 completed two implicit
motor learning tasks, the VMA and the SRT tasks (group 3) or
the VMA and ASRT tasks (group 4). We compared perfor-
mance across tasks, asking whether there are consistent indi-
vidual differences in implicit learning in two distinct task
domains. Within each task, we averaged performance across
the two runs. Note that given the lack of reliable learning in the
late probe for the SRT task, the data from this task should be
viewed cautiously.

Tables 1 and 2 present the correlation matrix and Fig. 5
depicts correlations between the different measures for each
task. Overall, there was little correlation between the rate of
adaptation and the magnitude of sequence learning, the key
measures of implicit learning. There was essentially no
correlation between VMA adaptation and SRT learning
(Fig. 5A), measured either at the end of training or at the
midpoint of the task (where learning is likely implicit and

Fig. 4. ASRT results (n � 25). A: group average of median RT for run 1 and run 2 (left), divided into low- and high-frequency triplets (center), and as difference
scores (right). B: reliability of RT, temporal variability, and learning between run 1 and run 2 scores. Baseline metrics of RT and the SD of RT are based on data from
blocks 2 and 3 (early in training); learning is averaged over blocks 4–45. C: correlations between different measures of performance.

422 INDIVIDUAL DIFFERENCES IN IMPLICIT MOTOR LEARNING

J Neurophysiol • doi:10.1152/jn.01141.2015 • www.jn.org

 by 10.220.33.3 on January 31, 2017
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


the measure was reliable). Regarding ASRT, there was a
positive correlation, albeit nonsignificant, between VMA
adaptation and ASRT learning over all participants (Fig. 5B;
r � 0.38, P � 0.17, 95% CI � [�0.14, 0.65]). However,
this correlation is largely driven by one participant who
showed faster adaptation and higher sequence learning. We
consider the effects of this outlier in two ways. First, when
we simply removed this data point, not only did the corre-
lation coefficient become much weaker but the direction
actually reversed (r � �0.17, P � 0.48, 95% CI � [�0.57,
0.3]). Second, we used a more conservative winzoring
procedure, replacing the values of the outlier with the
SRT/VMA values from the closest neighbors. This proce-
dure also indicated that there was no correlation between the
two learning scores (r � 0.03, P � 0.87, 95% CI � [�0.4,
0.46]). In sum, both trimming methods indicate that there is
no relationship between learning on the ASRT and VMA
tasks. Thus the correlational data fail to support the hypoth-
esis that there is some common process that contributes to
implicit motor learning across task domains.

The correlation matrix does highlight one other important
result. Learning was correlated with motor variability for
both the adaptation and sequence learning tasks. However,
the direction of the correlation was the opposite. For adap-
tation, the correlation was negative, suggesting that partic-
ipants with high spatial variability adapt at a slower rate. For
sequence learning, the correlation was positive, suggesting
that participants with high temporal variability learn sequen-
tial associations at a faster rate. This effect was only

significant for the ASRT task; nonetheless, a similar pattern
was observed in the late phase of the SRT task.

DISCUSSION

Motor skills occupy a prominent place as representative
of implicit or procedural memory in standard memory tax-
onomies (Squire and Zola 1996; Sun et al. 2007). We used
an individual differences approach to examine the relation-
ship between two classes of tasks commonly used to study
implicit motor learning, sensorimotor adaptation and se-
quence learning. Participants were tested in two separate
runs, allowing us to first examine whether measures of
learning and performance were reliable—a prerequisite for
evaluating individual differences. We then examined factors
that might account for individual differences within each
task, as well as the relationship in learning between the two
task domains.

Reliability of Implicit Learning

Surprisingly, we were unable to find any previous work
examining the reliability of individual differences in implicit
motor learning. Studies that tested people over multiple days
have generally focused on consolidation and thus repeated the
exact same task over successive days to look at variables such
as forgetting or off-line learning (for example, Doyon et al.
2009; Krakauer 2009; Meier and Cock 2014; Nemeth et al.
2010). These consolidation factors limit our ability to draw
inferences about reliability because there might be individual

Fig. 5. Between-task correlations of learning
scores. A: correlation between learning mea-
sures of visuomotor adaptation SRT using
the final probe of SRT learning (left) and
midway SRT learning (right). B: correlation
between learning measures on visuomotor
adaptation and ASRT. Note that the positive
correlation is largely influenced by the par-
ticipant who had the fastest rate of adapta-
tion and exhibited the largest amount of
sequence learning. When the correlation is
recalculated without this individual, there is
no correlation between the learning mea-
sures for the 2 tasks (r � �0.17, P � 0.48).
C: histogram of responses on Likert scale to
survey question probing awareness of the
perturbation (VMA) or sequence (SRT and
ASRT). Low values correspond to low
awareness; high values correspond to high
awareness. Although all of the scores are
toward the lower end, there is a rightward
shift of the distribution for the SRT task,
indicative of higher awareness of the pres-
ence of a sequence.
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differences in consolidation and other memory processes. Sav-
ings, the phenomenon in which people show faster relearning
of a previously forgotten memory, has been observed in visuo-
motor adaptation tasks, but these studies have not reported
individual differences and have used conditions in which
participants are likely aware of the perturbation (Morehead et
al. 2015; Zarahn et al. 2008).

In the present study, we observed reliable individual differ-
ences in core performance measures. Focusing just on the data
from the baseline phase of the tasks, MT was highly correlated
across runs in the VMA task and RT was reliable in both the
SRT and ASRT tasks. We do not consider these differences as
indicative of some sort of individual limit in performance.
Rather, they may be best viewed as a “signature” of a consis-
tent individual style, perhaps reflecting an idiosyncratic crite-
rion for how people choose to trade off speed and accuracy in
the context of each task. During the second exposure to the
tasks, participants reached faster in the VMA task and had
faster RTs in the sequence learning tasks, suggesting that
familiarity with the tasks led to similar improvements (broadly
speaking) across participants.

Our main interest was to ascertain the reliability of measures
of implicit learning. The rate of trial-by-trial adaptation exhib-
ited reasonable reliability across runs on the VMA task with
trial-by-trial adjustments that, on average, corrected for �10%
of the error. Similarly, learning, measured by the difference in
RT to high- and low-predictability stimuli, was reliable in the
ASRT task with a mean overall difference of 12 ms between
the high- and low-frequency elements. Post-experiment ques-
tionnaires confirmed that learning in the VMA and ASRT tasks
was implicit. We employed a very gradual perturbation in the
VMA task and never allowed the perturbation to exceed 12°.
For the ASRT task, various lines of evidence suggest that the
presence of random elements for 50% of the trials completely
disrupts awareness of the repeating elements (for example,
Howard and Howard 1997; Nemeth et al. 2010). The modest
learning scores are also consistent with the hypothesis that
learning was implicit.

Whereas we found consistent group-level learning on the
SRT task, the standard probes of learning were not reliable
across runs: On both runs there was a marked increase in RT
on the final Random blocks relative to surrounding Sequence
blocks, but the magnitude of this increase was inconsistent

between the two runs at the individual level. We are of the
opinion that at least two factors account for the lack of
reliability on the SRT task. First, learning on the form of the
SRT task used here is based on a measure that requires
averaging data across all of the trials within a block and then
comparing means across blocks. Variables that might introduce
block-by-block variation or low-frequency changes in perfor-
mance can have a large impact on such measures. For example,
the motivation level or idiosyncratic speed-accuracy criterion
might fluctuate from one block to the next. The VMA and
ASRT tasks are not impacted by such factors given that their
learning measures are continuously based on trial-to-trial per-
formance.

Second, the lack of reliable SRT learning could be related to
awareness. There is an extensive literature concerning the role
of awareness in the SRT task, as well as the methodological
challenges for assessing or eliminating/minimizing awareness
(for example, by adding a concurrently secondary task: Ghey-
sen et al. 2009; Grafton et al. 1998; Hazeltine et al. 1997;
Sanchez et al. 2010; or by using long sequences: Pascual-
Leone et al. 1993; Sanchez and Reber 2012; Spencer and Ivry
2009). Empirically, a number of the participants exhibited a
large increase in RT on the Random blocks in the late learning
probe (for example, 30% had an increase 	50 ms), a difference
that, in conjunction with fast RTs on the Sequence blocks, is
suggestive of awareness. Moreover, while we recognize the
limits in drawing comparisons between the tasks on the ques-
tionnaire data, it is noteworthy that the participants’ confidence
in the presence of a repeating pattern was higher in the SRT
task compared with the ASRT task and higher than partici-
pants’ confidence in the presence of a perturbation in the VMA
task. Awareness would contaminate our measure of implicit
learning (Reber and Squire 1998; Willingham et al. 1989) and
impact assessments of reliability. Consistent with this hypoth-
esis, we observed a modest correlation of the learning scores at
the midtask probe, a time point at which we expect awareness
to be lower.

Note that the contamination from awareness could either
increase or decrease reliability. If a subset of the participants
were aware (and thus had larger learning scores) on both run 1
and run 2, the correlation would be inflated. On the other hand,
awareness could decrease reliability if different subgroups of
participants became aware in run 1 and run 2. The reported
results suggest that the latter is more likely to have occurred
here. We do not claim that explicit learning is unreliable. Had
we used a completely explicit sequence-learning task, reliabil-

Table 1. Correlation matrices of key performance and learning
variables for VMA and SRT tests

SRT VMA

tSD Learning
Initial

Learning MT sSD LR

SRT
RT 0.02 �0.31* �0.58*** 0.08 0.37* 0.08
tSD �0.06 0.28 �0.05 �0.02 0.04
Learning 0.54** 0 �0.04 �0.06
Initial
learning �0.27 �0.22 �0.07

VMA
MT �0.08 0.21
sSD �0.4*

Subsets of participants who completed both visuomotor adaptation and
sequence learning. *P � 0.05, **P � 0.005, ***P � 0.001.

Table 2. Correlation matrices of key performance and learning
variables for VMA and ASRT tests

ASRT VMA

tSD Learning MT sSD LR

ASRT
RT 0.44* 0.42 0.30 �0.17 0.14
tSD 0.57** �0.02 �0.06 0.11
Learning �0.04 �0.19 0.31

VMA
MT �0.20 0.04
sSD �0.45*

Subsets of participants who completed both visuomotor adaptation and
sequence learning. *P � 0.05, **P � 0.005.
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ity might have been high. The problem, though, is when a
measure of learning is a composite of multiple processes and
that the weight given to those processes varies across measure-
ments.

In summary, the present results indicate that implicit mea-
sures of learning were reliable at the individual level in
response to a pseudorandom visuomotor rotation and in be-
coming sensitized to the predictability of sequential elements.
The lack of reliability in the SRT task presents a challenge for
studies that have used this task to explore individual differ-
ences (Noohi et al. 2014; Norman et al. 2007; Unsworth and
Engle 2005), and the presence of awareness also compromises
the utility of this task for studying implicit learning (Grafton et
al. 1998; Hazeltine et al. 1997; Keele et al. 2003). For example,
despite concurrently performing a secondary task, participants
could have developed different levels of awareness to the
repeating sequence (which would be difficult to track by
directly asking participants at the end of the task).

Is There a Common “Implicit Motor Learning” Component?

Studies of individual differences in motor control and learn-
ing have a long history. One prominent claim has been that
differences are task specific, a hypothesis supported by studies
using large test batteries (for example, Parker and Fleishman
1960) or studies of expertise (Bachman 1961; Chase and
Simon 1973; Mann et al. 2007). An alternative perspective,
advocated by Franklin Henry’s “specificity hypothesis” (see
Henry 1968), is that some component of individual differences
arises from a set of core operations that are shared across tasks.
Drawing on this idea, Keele and colleagues (Ivry and Keele
1989; Keele et al. 1985, 1987) provided evidence that individ-
ual differences in motor control might reflect variation in how
consistent people are in controlling certain parameters of
movement such as timing, force, or rate. For example, people
who were consistent in timing repetitive movements also
exhibited consistent timing when producing isometric force
pulses or in judging the duration of events. These ideas, in
combination with evidence from neuropsychological studies
(for example, Ivry and Keele 1989), led to models in which
different neural systems were associated with particular com-
ponent operations.

Extending the logic of that line of work, we asked here if
“implicit motor learning” might constitute a core component of
skill acquisition (see Conway et al. 2010). To this end, we
looked at between-task correlations. Given the reliability in the
VMA and ASRT tasks, we combined the results from the two
runs in making these comparisons. We also included the SRT
task, although these data should be viewed cautiously given the
lack of reliability in the measure of learning. The results
revealed no correlation between the learning measures on the
different tasks, arguing against the notion of a common im-
plicit learning process shared across motor learning tasks, at
least for visuomotor adaptation and sequence learning.

The lack of correlation might be surprising given that learn-
ing in both tasks has been associated with cerebellar function.
Patients with cerebellar pathology, from either focal insult or
degeneration, have pronounced impairments in learning when
tested on sensorimotor adaptation (Donchin et al. 2012; Martin
et al. 1996; Rabe et al. 2009; Schlerf et al. 2013; Shin and Ivry
2003; Smith and Shadmehr 2005; Taylor et al. 2010; Tseng et

al. 2007; Werner et al. 2010) and sequence learning tasks
(Gómez-Beldarrain et al. 1998; Molinari et al. 1997; Pascual-
Leone et al. 1993; Shin and Ivry 2003; but see Spencer and
Ivry 2009). Neuroimaging studies in humans (Bernard and
Seidler 2013; Danckert et al. 2008; Della-Maggiore and
McIntosh 2005) also point to an essential role for the cerebel-
lum, in generating the error signals to guide learning (Diedrich-
sen et al. 2005; Schlerf et al. 2013) and/or in generating the
predictions of expected sensory events (Ramnani et al. 2000).
Given the implicit nature of these tasks and the association of
the cerebellum with both sensorimotor adaptation and se-
quence learning, one might have expected to observe a corre-
lation in learning between the learning tasks.

However, several explanations might account for why the
measures of learning were not correlated. First, based on
computational considerations, adaptation and sequence learn-
ing require very different learning mechanisms and operations.
Adaptation is error driven, entailing the modification of an
internal model based on the difference between predicted and
observed sensory feedback (Taylor and Ivry 2012). Error-
based learning is likely to contribute minimally to sequence
learning; here, learning involves the formation of associations
between successive stimulus-response pairs, supporting the
establishment of predictions from one S-R element to the next.
This process, at least when arising implicitly, might be more of
a Hebbian-like process (Lu et al. 1998; Nixon and Passingham
2000; Spencer and Ivry 2009). As such, adaptation involves
changes in terms of refining execution, whereas sequence
learning is more about priming for action selection.

Second, the linkage of both tasks through their association
with the cerebellum is, at best, superficial. The cerebellum is a
large structure, and although it has been associated with both
adaptation and sequence learning, one need not assume that
these two task domains engage similar regions and/or cerebel-
lar operations. Indeed, the evidence suggests that adaptation
and sequence learning tasks may engage distinct cerebellar
regions and cortico-cerebellar loops (Buckner et al. 2011;
Kelly and Strick 2003; Krienen and Buckner 2009; Strick et al.
2009). Neuropsychological and neuroimaging evidence point
to the involvement of motor regions of the cerebellum in
adaptation tasks, including cerebellar regions with relatively
clear somatotopy. These regions exhibit strong functional con-
nectivity with motor cortex (Bernard and Seidler 2013; Burciu
et al. 2014), as was found even during sensorimotor adaptation
tasks (Burciu et al. 2014; Rabe et al. 2009). Sequence learning,
on the other hand, has been linked with neocerebellar regions
that are functionally connected with premotor and prefrontal
cortex (Bernard and Seidler 2013; Nixon and Passingham
2000; Ramnani et al. 2000; Seidler et al. 2002; although it
remains unclear whether this holds for both explicit and im-
plicit conditions, see Hazeltine et al. 1997). Moreover, it
remains unclear whether the cerebellar contribution to se-
quence learning is directly related to learning per se or is
indirect, related to the formation and/or maintenance of the
stimulus-response associations (Nixon and Passingham 2000;
Spencer and Ivry 2009).

In future work it will be interesting to exploit individual
differences in comparing cerebellar contributions to adaptation
and sequence learning. For example, we might expect that
functional connectivity between cerebellar regions and primary
motor cortex will be predictive of learning rates in sensorimo-
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tor adaptation (Bernard et al. 2012; although see Rabe et al.
2009), whereas functional connectivity between cerebellar re-
gions and premotor/prefrontal cortex will be predictive of
sequence learning.

We recognize that our assays of learning for visuomotor
adaptation and sequence learning involve very different mea-
sures (spatial accuracy vs. RT). There are cases in which
performance measured in different units and on different scales
do correlate (for example, mathematical skill, verbal fluency,
and spatial visualization, among others, composing a construct
of general intelligence, g) (Spearman 1904). Thus the use of
different measures does not inherently impose a bias against
observing a relationship between the two domains of implicit
learning. Nonetheless, it would be interesting to compare tasks
of implicit learning in which more similar measures were
employed, for example, by using adaptation to a temporal
delay.

Within-Task Behavioral Predictors of Implicit Learning

The preceding discussion indicates that there is little
commonality between processes involved in implicit adap-
tation and implicit sequence learning. A different question
concerns predictors of each of these forms of learning. To
address this question, we focused on baseline measures of
performance, using data obtained prior to the onset of the
perturbation in the VMA task or during the early stages of
the sequence tasks when there was little evidence of learn-
ing. We looked at two features of baseline performance:
speed and variability.

As a measure of performance speed, we used MT in the
VMA task and RT in the sequence-learning task, the temporal
measures that were emphasized in the instructions used for
each task. There was no relationship between MT and the rate
of adaptation. In contrast, RT was correlated with sequence
learning. However, the direction of the correlation was in
opposite directions for the two sequence learning tasks: For
SRT, the correlation was negative, with faster responders
exhibiting the largest degree of learning; for ASRT, the corre-
lation was positive, with the slower responders exhibiting the
largest degree of learning.

The ASRT task is consistent with other work showing that
the benefits of associative retrieval processes become higher as
RT increases (Chenery et al. 1994). A similar idea could
account for the positive correlation between RT and learning in
the ASRT task. However, this hypothesis would also predict a
similar pattern in the SRT task, whereas here the correlation
was reversed. It might be that the reversal is related to the
concern discussed above, namely that some participants may
have developed a degree of awareness in the SRT task. Aware-
ness would not only lead to the largest cost on the Random
blocks (high magnitude of learning) but should also lead to fast
RTs (namely, expecting and even predicating the next stimu-
lus-response pair). We recognize that our interpretations of
these RT relationships are speculative and call for further
study.

Next, we considered how performance variability was re-
lated to individual differences in learning. For variability, we
used a measure of spatial variability for the VMA task, using
the SD of the heading angle during the baseline block (no
perturbation). For the sequence learning tasks, we used the SD

of the RTs in the early blocks. Here we observed reliable
correlations between measures of variability and learning on
both the VMA and ASRT tasks. The rate of adaptation was
negatively correlated with variability, such that faster learning
was associated with more consistent reaches. In contrast, the
magnitude of sequence learning was positively correlated with
variability, such that the extent of learning was highest for
participants who were most variable in RT. A similar pattern
was also observed in the SRT task. We recognize that there are
differences in our measures of variability for the two task
domains; in particular, one is a spatial measure and the other a
temporal measure. Nonetheless, we chose these variability
measures since they are closest to the dependent variable
related to learning on each task.

The negative relationship between variability and learning
rate on the VMA task is consistent with models in which motor
output or sensory noise modulates the weight given to an error
signal (Baddeley et al. 2003; van Beers 2009; Burge et al.
2008; Körding and Wolpert 2004; Schlerf et al. 2013). In
conditions of high noise, these models would predict that the
motor system would reduce its learning rate because confi-
dence (or certainty) in the sensory signal is low; the converse
is true in conditions of low noise. We would expect this
relationship to be especially pronounced in the present study
given our use of a small perturbation, one in which learning
was entirely implicit. Indeed, the size of the perturbation
change from trial to trial never exceeded 2°, falling within 1
SD of the expected distribution of end points for reaches in the
absence of any perturbation.

An error-based account does not seem appropriate when
considering sequence learning, because the fundamental learn-
ing mechanism here entails an associative process, one that
learns to predict successive elements in a chain of events. As
such, the absence of a negative correlation between our per-
formance measure of variability, the SD of RT, and sequence
learning is not surprising. However, the reversal to a positive
correlation is intriguing. Wu and colleagues (Wu et al. 2014)
observed a similar relationship, albeit in measures of spatial
variability, in a task in which participants had to learn a
complex trajectory or force field. They hypothesized that
higher variability enabled increased exploration of the work-
space and thus allowed participants to discover the appropriate
solution. An extension of the exploration idea to account for
the positive correlation in the sequence learning tasks in the
present study is not straightforward: It is not obvious how
higher temporal variability promotes, or reflects, exploration.
Perhaps temporal variability is indicative of a variable retrieval
process and this variability helps with the formation of sequen-
tial associations. Related to this idea, temporal variability was
correlated with mean RT in the ASRT task (even after normal-
izing the temporal variability by mean RT) and, as described
above, longer (and more variable RTs) might have allowed
greater spreading activation from one element to the next. Our
sequence learning data suggest that motor variability should
not be considered merely the inevitable consequence of signal-
dependent neural noise in the motor system that ought to be
overcome but can instead be viewed as a key ingredient of
learning, centrally driven and actively regulated, that the motor
system leverages during learning.
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