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Introduction

The amount of sensory data encountered by the visual system often exceeds its processing

capacity. One solution is to exploit statistical structure in the natural environment to

generate a more efficient representation of the information (Simoncelli & Olshausen, 2001).

For example, the visual system may construct a “statistical summary representation” over

groups of visual objects, reflecting their general properties (Alvarez, 2011). Indeed, it has

been shown that observers are able to quickly and accurately extract average values over a

range of visual feature dimensions, including size (Chong & Treisman, 2003), orientation

(Parkes et al. 2001), and emotional expression (Haberman & Whitney, 2007). However, it

remains an open question as to how observers learn to produce such accurate estimates of

these summary statistics. Although good performance on these tasks suggests that summary

features are readily accessible, it is not clear to what extent these statistical operations are

performed automatically—integrating over sensory information in an unsupervised fashion,

or are penetrable to task demands—flexibly incorporating observer goals and error-related

feedback to maximize performance (Bauer, 2009; Myczek & Simons, 2008).

In the present study, we sought to understand the role of learning in statistical summary

representations. Specifically, we examined the contribution of task practice and performance

feedback to perceptual discrimination of the centroid (i.e., mean location) of a set of objects

(Alvarez & Oliva, 2008). We hypothesized that providing vector error feedback (i.e.,

containing both distance and direction information) while observers practiced making

pointing movements toward the centroid would improve the fidelity of their centroid

representations. This improvement might be reflected in reduced error during training and

lower discrimination thresholds in an independent perceptual test.

Methods

The experimental protocol consisted of three phases conducted over two consecutive days: a

pre-test phase on Day 1, and training and post-test phases on Day 2. In all phases, trials

contained an array of 8 dots (diameter=0.9°) presented for 200 ms on a touchscreen display

(49.9° × 40.0°), positioned vertically 43 cm from the observer (Fig. 1A). Individual dot

locations were independently sampled from a bivariate Gaussian distribution (circularly

symmetric; σ of marginal distributions=11.2°).
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The pre-test and post-test phases consisted of a perceptual discrimination task (4 blocks, 50

trials/block). This task entailed judging which of the four display quadrants (NE, NW, SE,

SW) contained the centroid (Fig. 1C). Centroid locations in the discrimination task were

distributed following a hyperbolic function: r = c/sqrt(cos(θ)*sin(θ)), where r is the radial

distance from the center of the display, θ represents randomly sampled angles, and c is a

scaling factor that controls the overall distance to the nearest quadrant boundaries. Smaller

values of c produce displays with centroids falling closer to boundaries, thus making

discrimination more difficult. The difficulty of the pre-test and post-test phases (determined

by the magnitude of c) was adjusted for each observer via an adaptive staircasing procedure

calibrated to estimate their 62.5% threshold on the 4AFC task (QUEST; Pelli & Watson.

1983). No feedback was given during the pre-test and post-test phases.

The training phase consisted of a centroid estimation task (12 blocks, 50 trials/block). This

task entailed tapping the display at the perceived location of the centroid with the right index

finger (Fig. 1B). Centroid locations in the estimation task were distributed uniformly across

the central 25% of the display area. We manipulated the type of feedback delivered during

the training phase: observers in the Vector condition (N = 15) received vector error feedback

on a trial-by-trial basis (i.e., about the distance and direction of the centroid from their

response), in addition to receiving scalar error feedback at the end of each block (i.e.,

proportional to the average deviation, without direction information); observers in the

Control condition (N = 15) received only the block-wise scalar error feedback. Vector error

feedback was delivered by marking the correct centroid location with a green crosshair at

the time of response. Scalar error feedback was delivered as point totals, where the number

of points earned followed a Gaussian reward function of deviation from the centroid.

Results and Discussion

Pre-test phase performance on the discrimination task in both Vector and Control groups

was significantly better than chance (58.4% correct vs. 25%; t(29)=18.4, p ≪ 0.001), and

did not differ between groups (t(28)=1.32, p=0.199). Estimates of c, which controlled

discrimination task difficulty did not differ between groups (t(28)=1.08, p=0.291).

Training phase performance—measured as root-mean-squared error (RMSE)—was

marginally better in the Vector group than in the Control group (t(28)=1.91, p=0.067; Fig.

1D). When we examined errors in the first of twelve training blocks (50 trials), this

difference was more robust (t(28)=2.45, p=0.021). Verifying that the early advantage for the

Vector group was due to improvement across the first block rather than a baseline

difference, a 2 (time bin: first vs. second half) × 2 (condition: Vector vs. Control) mixed

measures ANOVA revealed a significant interaction (F(1,28)=5.46, p=0.027). Importantly,

performance did not initially differ between groups in the first half (t(28)=1.26, p=0.219).

Taken together, these results are consistent with the possibility that that vector error

feedback induces rapid calibration of the centroid representation, although further task

practice does not necessarily reduce noise in centroid estimates—at least over the training

period tested.
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Post-test phase performance revealed the primary consequences of training: enhancement of

perceptual discrimination was greater in the Vector group (+7.1% correct; t(14)=3.28,

p=0.006) than in the Control group (+0.01% correct; t(14)=0.05, p>0.900), after controlling

for pre-test performance (ANCOVA: F(1,26)=5.09, p=0.033; Fig. 1E). Thus, although

vector error feedback in the training phase only marginally improved concurrent accuracy in

the estimation task, this feedback appears to have tuned centroid representations in a more

general manner, promoting transfer to a separate perceptual task that required a categorical

decision.

In sum, our preliminary findings suggest that statistical summary representations are not

merely an automatic consequence of visual experience. Rather, they can be rapidly tuned

based on external feedback to flexibly support our perceptual goals in different contexts.
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Figure 1.
(A) Dot array presented on each trial for 200 ms. (B) Estimation task entailed tapping screen

at location of centroid (training phase). Vector feedback (for Vector group) delivered as

green crosshair at centroid location. (C) Discrimination task entailed selecting quadrant

containing centroid (pre-test and post-test phases). (D) Estimation performance during the

training phase (error bars represent 95% CI). (E) Discrimination performance during the pre-

test and post-test phases (error bars represent 1 SEM).
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