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ABSTRACT 

 

To generate adaptive movements, we must generalize what we have previously learned to 

novel situations. The generalization of learned movements has typically been framed as a 

consequence of neural tuning functions that overlap for similar movement kinematics. However, 

as is true in many domains of human behavior, situations that require generalization can also be 

framed as inference problems. Here, we attempt to broaden the scope of theories about motor 

generalization, hypothesizing that part of the typical motor generalization function can be 

characterized as a consequence of top-down decisions about different movement contexts. We 

tested this proposal by having participants make explicit similarity ratings over traditional 

contextual dimensions (movement directions) and abstract contextual dimensions (target 

shape), and perform a visuomotor adaptation generalization task where trials varied over those 

dimensions. We found support for our predictions across five experiments, which revealed a 

tight link between subjective similarity and motor generalization. Our findings suggest that the 

generalization of learned motor behaviors is influenced by both low-level kinematic features and 

high-level inferences. 
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INTRODUCTION 

Adaptive motor behavior is not just about executing movements precisely, it’s also about 

selecting them intelligently. Action selection is especially important (and difficult) because of the 

so-called “curse of dimensionality” – no two movements, nor any two situations, are the same. 

Because of this fact, agents must rely on prior experience to generalize movements to new 

situations. One approach to the generalization of movements is to make informed inferences 

about how one should move in a new context. Indeed, inference is thought to be the brain’s 

solution for generalizing learned behaviors across diverse environmental contexts (Collins & 

Frank, 2013; Shepard, 1987; Tenenbaum & Griffiths, 2001). 

 

In the motor domain, however, theories of generalization primarily focus on physiological 

considerations rather than cognitive processes. To illustrate, consider the typical generalization 

experiment in a motor adaptation study, in which an individual makes center-out reaches in a 

radial workspace: When a particular movement – say a reach directed at a 90° target – is 

repeatedly paired with a sensorimotor perturbation, such as a 30° clockwise rotation of a visual 

feedback signal, the individual will incrementally adapt their movements, eventually directing 

their reaches toward 120° to restore performance. If the learner is then presented with a novel 

target – say at 135° – their movement kinematics will still show signatures of adaptation. That is, 

their reaches might be directed toward ~145°, reflecting partial adaptation even though they 

never experienced a perturbation at that location. This behavior is presumed to reflect 

representational principles of the motor system, where neural populations encode kinematics or 

muscular dynamics  (Churchland et al., 2012; Donchin et al., 2003; Georgopoulos et al., 1982; 

Tanaka et al., 2012; Thoroughman & Shadmehr, 2000; Thoroughman & Taylor, 2005). In this 

view, generalization of an adapted sensorimotor map is explained exclusively by physiological 

considerations, with partially overlapping neural responses for similar movements (Poggio & 

Bizzi, 2004). 

 

Models that focus on joints, muscles, and associated neural tunings do not parsimoniously 

explain the observed heterogeneity in motor generalization functions seen across the literature 

(Berniker et al., 2013; Brayanov et al., 2012; Donchin et al., 2003; Gandolfo et al., 1996; 

Krakauer et al., 2000; Malfait et al., 2005; Shadmehr & Mussa-Ivaldi, 1994; Tanaka et al., 2012; 

Taylor et al., 2012; Thoroughman & Shadmehr, 2000; Thoroughman & Taylor, 2005), nor do 

they address the important role cognitive strategies play in motor learning (Day et al., 2016; 

Heuer & Hegele, 2011; McDougle et al., 2017; McDougle & Taylor, 2019; Poh & Taylor, 2019; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.09.430542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430542
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Taylor & Ivry, 2012). In our view, this can be amended if typical motor generalization tasks are, 

in part, re-conceptualized as decision-making problems (Tenenbaum & Griffiths, 2001): How 

should one move in a new situation? In this perspective, motor generalization functions are 

multiplexed, reflecting both inferences stemming from representations in a high-dimensional 

“psychological space” (Shepard, 1987) and physiological constraints stemming from a lower-

dimensional “movement space” (Poggio & Bizzi, 2004). The idea that generalization behavior is 

driven by distances between contexts in psychological space has unified seemingly disparate 

generalization behavior across many task domains (Chater & Vitányi, 2003; Cheng, 2000; 

Medin & Schaffer, 1978; Nosofsky, 1988; Shepard, 1987). 

 

To test our proposal, we performed five experiments that measured people’s subjective 

judgments about different movement contexts, and their generalization of learned motor 

behaviors across those contexts. We found consistent support for our hypothesis, 

demonstrating that the generalization of learned sensorimotor transformations includes a large 

component reflecting high-level inferences about different contexts and a smaller component 

likely reflecting movement-specific neural constraints. 

 

 

RESULTS 

Experiment 1 

How do subjective inferences relate to the generalization of learned motor behaviors? We asked 

if the transfer of learned motor behavior from a single training target direction to novel target 

directions (Figure 1A), which reflects a typical visuomotor generalization experiment, is 

predicted by the subjective similarity between those contexts. Participants performed a match-

to-sample similarity judgment task (Figure 1B), using a likert scale of 1-7 (with 1 reflecting the 

largest difference between contexts) to make pairwise comparisons between the act of reaching 

to a single “anchor” training target versus 45 unique probe target directions (Figure 1A, B, C; 

see Methods for details). After this task, we imposed a visuomotor rotation of the visual 

feedback cursor at the anchor target direction, requiring participants to adapt their movements 

to restore performance at that target (Figure 1D). We then tested generalization by again having 

participants move to the probe target directions with no feedback. 
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Figure 1. Experimental design and procedure. (A) Participants made center-out reaching 
movements using a robotic manipulandum (top). A schematic diagram of the task display (bottom) 
shows example target locations (blue circles) with respect to an anchor target (red). The hand and 
arm were occluded by a reflective mirror that displayed visual stimuli presented on a horizontally-
mounted LCD screen. Only a single target is displayed per trial. (B) Match-to-sample judgment 
task. In Experiments 1, 2 and 4, participants performed trial pairs where they reached first to the 
designated anchor target location, then to a probe target in a different location. A similar method 
was used in Experiments 3, 4 and 5, but instead of probe targets being placed in a new location, 
they were in the same location as the anchor target but continuously varied from the anchor target 
in an abstract “shape dimension.” The shape dimension ranged from “smooth” to “spiky”, and was 
based on a previous study (van Dam & Ernst, 2015). (C) After performing each match-to-sample 
trial pair, participants either rated the similarity between the two trials (Experiments 1, 3, 4, and 5) 
or their perceptual discriminability (Experiment 2). (D) Each experiment consisted of a rating phase, 
a rotation adaptation phase (45˚ rotation of visual endpoint feedback), and a generalization probe 
phase, in that order. The particular length of each phase varied across experiments (see Methods). 

 

 

As illustrated in Figure 2A, participants quickly and robustly adapted to the 45˚ rotation imposed

at the anchor target (asymptote: average of last 10 trials of learning, 42.85 ± 1.37˚; mean ± 95%

C.I.). During the generalization phase, participants’ movements to probe targets reflected the

canonical motor generalization curve typically observed in adaptation tasks (e.g., Krakauer et

al., 2000), with the degree of adaptation falling off exponentially with the distance of the probe

from the training direction (Figure 2B). Participants’ generalization curves in the similarity

judgment task showed a qualitatively similar shape, with decreasing similarity at further

distances from the anchor/training target (Figure 2C, D). 
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The key analysis in Experiment 1 involved directly comparing the gradients of the subjective and 

motor generalization functions. We folded each generalization function using the absolute 

angular distance of probe targets from the training (anchor) target and z-scored both functions 

(within each condition and subject) to afford direct comparisons (Figure 2E). Each function 

showed roughly monotonic exponential decay, consistent with Shepard’s Universal Law of 

Generalization (Shepard, 1987). We used linear regression to statistically compare each 

participant’s average similarity and motor generalization functions. Consistent with our 

hypothesis, we observed a striking agreement between these functions (Figure 2E, F) – the 

similarity judgment curve provided a strong fit to the motor generalization curve, with an R2 

value of 0.71 ± 0.13. Critically, while both functions were expected to monotonically decrease 

with greater probe distance, there was no a priori reason, apart from our hypothesis, to believe 

that they would decay at nearly equivalent rates. Experiment 1 thus suggests that motor 

generalization may reflect, in part, a parametric “readout” of subjective inferences about the 

relationship between learning and transfer contexts. 

  

Figure 2. Experiment 1: Motor generalization reflects subjective similarity of different movement 
contexts. (A) Adaptation curve, reflecting the time course of participants learning to counteract the 
45˚ rotation imposed at the anchor target. (B) Motor generalization function after adaptation to the 
rotation. The abscissa reflects the angular distance of the probe target from the anchor target (with 
the anchor target fixed at 0˚ for all participants for visualization purposes), and the ordinate reflects 
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the reach deviation with respect to a direct reach to the probe (i.e., 0˚ deviation). (C) Subjective 
similarity function. participants performed a match-to-sample task, reaching to an anchor target 
direction and then a probe target direction, and then reporting on a 1-7 scale the similarity between 
the two movements (1 = least similar; 7 = most similar). (D) Normalized (z-scored) data from panels 
(C) and (D). (E) Decay functions were computed after normalization by collapsing target direction 
based on absolute angular distance. (F) Visualization of pooled data consisting of each 
participant’s normalized generalization/rating data (grey line = identity line). Error shading = 95% 
C.I. 

 

 

Experiment 2 

Experiment 2 served two functions: First, this experiment tested the alternative hypothesis that 

perceptual confusability between target directions better explains motor generalization; second, 

this experiment acted as a control for a potential confounding factor in Experiment 1, wherein 

the act of making similarity judgments may have biased motor behavior. The procedures for 

Experiment 2 were identical to Experiment 1, but instead of making similarity judgments 

participants simply reported whether they thought two different reaches, directed at the anchor 

target and a probe target, were the same or different (Figure 1C).  

 

Participants in Experiment 2 also adapted easily to the perturbation (asymptote: 42.38 ± 0.82˚; 

Figure 3A). More importantly, motor generalization in this new sample mirrored that seen in 

Experiment 1, showing a wide Gaussian function and gradual decay with increasing probe 

distance (Figure 3B). In contrast, perceptual confusability between the anchor and probe targets 

rapidly disappeared as the angular difference increased, with a just noticeable difference (50% 

JND) of 4.80 ± 0.71˚ (Figure 3C; JND determined via exponential fits; see Methods). As seen in 

Figure 3D, perceptual report functions captured a modest, though significant, amount of 

variance in motor generalization (R2 = 0.20 ± 0.06). 

 

Critically, a cross-validated analysis points to a central role for psychological similarity in motor 

generalization: We took the average similarity judgment decay function from Experiment 1 

(Figure 2E, red) and regressed it onto the (folded) motor generalization function from 

Experiment 2. This out-of-sample similarity function explained 80% of the variance (R2 = 0.80 ± 

0.06) in the motor generalization function (Figure 3D), reflecting a four-fold increase in variance 

explained when using similarity judgments from a separate sample versus participants’ own 

perceptual judgments (comparison of R2 values, t(15) = 23.41; p < 0.001). Crucially, in addition 

to replicating the findings from Experiment 1, these results also rule out a confound wherein the 

act of making similarity judgment biases motor generalization. 
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Figure 3. Experiment 2: Motor generalization is better explained by subjective ratings of contextual 
similarity versus perceptual discriminability. (A) Adaptation learning curve. (B) Motor generalization 
function for Experiment 2. (C) Average perceptual discriminability of reaches to the anchor target 
versus probe targets at various angular distances (a value of 1 reflects reaches judged as identical; 
a value of 0 reflects reaches judged as different). (D) Motor generalization variance explained by 
participant’s perceptual discrimination functions (violet) versus the average similarity rating function 
measured in the separate group of participants performing Experiment 1 (red). Dots represent 
individual participants. Error shading and error bars = 95% C.I. 
 

Experiment 3 

So far, our results have shown that explicit similarity judgments about reaching to different 

spatial locations echoes the generalization of adapted movements. Next, we addressed a 

deeper question: Does motor generalization match subjective judgments only when both are 

linked to the same variable (e.g., direction), or is motor generalization a behavioral correlate of 

an abstract psychological representation? 

 

In Experiment 3 we cued different contexts using target shape rather than target direction 

(Figure 1B). Specifically, the target’s shape on each trial was a particular “morph” in an 

equispaced linear mapping from “round” to “spiky” shapes (van Dam & Ernst, 2015). For all 

trials and participants, the target was always presented at a fixed location, regardless of its 

shape. Apart from these changes, the experiment mirrored Experiments 1 and 2 (save for minor 
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alterations to the length of each task phase; see Methods). Participants judged the similarity 

between their particular anchor shape (i.e., either the most rounded or most pointed shape, 

counterbalanced across participants) and each of 23 probe morphs. They then adapted to a 45˚ 

visuomotor rotation imposed on the anchor/training shape, and subsequently generalized to 

novel probe shapes.  

 

Motor adaptation was again rapid and robust, as observed in the previous experiments (Figure 

4A; asymptote: 43.12 ± 1.29˚). Critically, participants showed monotonically decreasing motor 

generalization as a function of the target morph distance (in shape-space) from the 

anchor/training target (Figure 4B). Again, we observed a nearly identical function for the 

similarity judgments (Figure 4C, D; R2 = 0.85 ± 0.04). We note that the motor generalization 

functions for direction (Figures 2 and 3) and shape (Figure 4) have different shapes, an 

observation we address in the next experiment. Overall, these data suggest that motor 

generalization is determined in large part by the distance between training and transfer contexts 

in an abstract psychological dimension.  

 

Figure 4. Experiment 3: Motor generalization is shaped by an abstract psychological space. (A) 
Adaptation curve. (B) Motor generalization as a function of target shape (target direction was held 
constant in all trials). (C) Normalized motor generalization (blue) and similarity judgment (green) 
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functions, with respect to target shape. (D) Visualization of each participant’s normalized 
generalization/rating data (grey line = identity line). Error shading = 95% C.I. 
 
 

These data so far are broadly consistent with the Universal Law of Generalization, which 

describes an abstract representational space that shapes generalization behavior across a 

diverse range of tasks (Shepard, 1987). However, a key normative ingredient from that proposal 

is missing here: The dimension over which generalization occurs must be deemed 

“consequential” by the learner, or it will be ignored. That is, if a butterfly’s color correlates with 

being poisonous but not its wing size, a bird should generalize with respect to the former whilst 

ignoring the latter (assuming they are orthogonal). So far, our tasks have only had a single 

salient dimension (i.e., direction, shape). Next, we pitted these two dimensions against each 

other, and biased participants, through instruction, to deem one dimension as relevant and 

ignore the other. If generalization is indeed shaped by the so-called consequential dimension, 

we expected participants' motor behavior to generalize according to the explicitly emphasized 

dimension. Moreover, we also predicted an asymmetry between these dimensions, whereby 

subtle implicit contributions to generalization would be direction-specific (Morehead et al., 2017; 

Poh & Taylor, 2019), creating biases even when target direction is supposed to be ignored. 

 

Experiment 4 

Two separate groups of participants were exposed to an identical sequence of trials, again 

starting with a similarity judgment phase, an adaptation phase, and a generalization probe 

(Figure 1D). Target location and target shape morph were simultaneously varied in a fully 

factorized design (i.e., an equal number of unique target morphs were experienced at each 

target direction). Crucially, participant group was determined by the instructions they received 

from the experimenter: In the Direction Emphasis group, participants performed direction-based 

similarity judgments and were told to attend to target direction and “adjust based on how similar 

the movement directions are”; in the Shape Emphasis group, participants performed shape-

based similarity judgments and were told to attend to target shape and “adjust based on how 

similar the shapes are”. (We note that we purposefully did not specify what type of adjustment 

participants should make; see Methods). 

 

As depicted in Figures 5A and 5B, participants in both groups readily adapted to the rotation 

(asymptotes: 43.18 ± 0.89˚ and 42.07 ± 0.94˚, respectively). Crucially, instruction about specific 

dimensions had a strong effect on generalization: When looking at the effect of target shape 

(Figure 5C), the Shape Emphasis group showed the predicted motor generalization function, 
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replicating the results of Experiment 3. Conversely, the Direction Emphasis group did not 

generalize according to shape. That is, because each shape was seen an equal number of 

times at each direction, the Direction Emphasis group’s shape-based generalization function 

was a nearly flat line centered on their average movement angle during the probe trials. 

 

When generalization was quantified with respect to target direction (Figure 5D), we found similar 

results, though also observed directional biases even when the direction dimension was 

instructed to be non-consequential. That is, while the Direction Emphasis group showed the 

predicted generalization function as target distance increased from the training target, the 

Shape Emphasis group’s generalization behavior was also affected by target direction: In the 

Shape Emphasis group, generalization near the training target location was 17.36 ± 4.00˚ higher 

than the mean reaching deviations beyond the 45˚ probe target (t(15) = 8.51; p < 0.001). These 

results support two conclusions: First, that motor generalization is strongly influenced by the 

explicitly consequential task dimension, consistent with our main hypothesis, and second, that 

movement direction appears to be a special case, influencing motor generalization even when it 

is not supposed to be relevant.  
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Figure 5. Experiment 4: Generalization is influenced by explicitly emphasized contextual 
dimensions. Adaptation curves in the Shape Emphasis (A) and Direction Emphasis (B) groups. (C) 
Motor generalization curves with respect to target shape, for the Shape Emphasis group (green) 
and Direction Emphasis group (brown). (D) Motor generalization curves with respect to target 
direction, for the Shape Emphasis group (green) and Direction Emphasis group (brown). The black 
double arrow highlights generalization behavior in the Shape Emphasis group (green) over the 
“irrelevant” dimension of direction. Error shading = 95% C.I. 

 

In light of previous research, the observed obligatory effect of movement direction is not 

surprising – motor adaptation has a prominent implicit learning component, and this component 

is thought to generalize in these tasks according to kinematic dimensions (Brayanov et al., 

2012; Krakauer et al., 2000; Morehead et al., 2017; Poh & Taylor, 2019). Thus, we 

hypothesized that generalization over the irrelevant directional dimension seen in Figure 5D 

(green) was likely due to implicit learning. To test this, in our final experiment we isolated the 

implicit component of visuomotor adaptation, predicting that the generalization of implicitly 

learned visuomotor transformations would not be significantly modulated by non-kinematic 

dimensions (i.e., target shape). This observation would suggest that motor generalization is 

influenced by a mixture of factors, including kinematically-linked implicit representations and 

top-down inferences. 

 

Experiment 5 
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We used a recently-developed method – the task-irrelevant error-clamp (Morehead et al., 2017) 

– to isolate motor learning that putatively relied on implicit processes. In this method, 

participants reach for visual targets and are firmly instructed to never aim their reaches 

anywhere but directly for the target. Critically, a visuomotor rotation is imposed such that a 

visual feedback cursor is yoked to the participant’s reaching velocity but follows a rigid path at a 

fixed deviation from the target (see Methods). Even though participants ignore this feedback, 

their movements incrementally deviate in the direction opposite the error without their 

awareness (Tsay et al., 2020).  

 

We replicated the procedure in Experiment 3 (i.e., shape-based generalization) using the error-

clamp method outlined above. Participants implicitly adapted to a 20˚ error-clamp imposed at 

the anchor target, reaching an asymptote of 8.68 ± 3.45 in 80 trials (Figure 6A). Generalization 

across target shapes was strikingly uniform – participants moved in roughly the same (adapted) 

direction regardless of the shape of the probe target (Figure 6B; mean slope of generalization 

function: -0.01 ± 0.01); we note that while small, there was a marginal negative effect of probe 

target shape dissimilarity versus the anchor on motor generalization (t-test on regression 

slopes: t(15) = 1.93; p = 0.07).  

 

Subjective similarity judgments replicated what was observed in Experiment 3, showing  

monotonically decreasing similarity ratings as the probe morph deviated from the anchor target 

shape (Figure 6C). However, as predicted, subjective similarity between target shapes 

appeared to play a minimal role in implicit motor generalization (R2 = 0.03 ± 0.02). These 

findings suggest that generalization of motor behavior in psychological space, as observed in 

the four previous experiments, likely maps onto an intentional component of motor learning 

(McDougle et al., 2016), whereas obligatory directional generalization is likely the consequence 

of an implicit learning system (Day et al., 2016; Heuer & Hegele, 2011; McDougle et al., 2017; 

Morehead et al., 2017; Poh & Taylor, 2019). 
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Figure 6. Experiment 5: Isolated implicit adaptation component does not generalize according to 
subjective inference. (A) participants adapted to a 15˚ fixed “error clamp” perturbation, which they 
were told to ignore and only aim their reaches directly at presented targets (Morehead et al., 2017). 
participants implicitly adapted to the perturbation. (B) Targets were only presented in a single 
direction, but with 24 different shape morphs, with the anchor target at on the extremes of the 
target shape dimension. Participants generalized similarly across shape morphs. (C) Normalized 
implicit motor generalization (blue) and subjective similarity ratings of target shapes (green) were 
not significantly related. (D) Visualization of each participant’s normalized generalization/rating data 
(grey line = identity line). Error shading = 95% C.I. 

 

In our last analysis, we tested a natural extension of our hypothesis: If subjective scaling 

functions are predictive of motor generalization, we should see a between-subject correlation of 

the decay rates for each measure. Power within individual experiments (N = 16) was too low for 

reliable between-subject correlations (Bonett & Wright, 2000). In addition, large differences in 

raw subjective and motor generalization decay rates across experiments precluded correlating 

raw pooled data, as the condition-level effects would confound the results (Makin & Orban de 

Xivry, 2019). Thus, within each experiment that included similarity judgments but did not isolate 

implicit learning (i.e., Experiments 1, 3, and 4), we separately z-scored fitted exponential decay 

rates for participants’ judgment and motor generalization functions. We then performed a 

correlation on the resulting pooled, independently normalized data (N = 64). As predicted, the 
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decay rates of the subjective scaling and motor generalization functions were significantly 

correlated (ρ = 0.33; p = 0.007; Figure 7). 

Figure 7. Correlation between subjective and motor generalization decay rates. Decay rates were 
computed by fitting exponential functions to each generalization function (subjective and motor). 
They were then normalized (z-scored) within each experiment, and correlated between participants 
in all experiments tested (Experiment 1: circles; Experiment 3: triangles; Experiment 4: squares). 
The least-squares regression function is shown in black with 95% C.I. N = 64. 
 

 

DISCUSSION 

Generalization is a critically important aspect of behavior – it speaks to the fundamental 

representational principles of the brain. Shepard’s “Universal Law of Generalization” (Shepard, 

1987) states that the probability of a learned behavior (e.g., a pigeon’s knowledge that pecking 

at a blue light flash predicts a reward) generalizing to a novel context (e.g., a green light flash) 

falls off exponentially with the putative “psychological distance” between the contexts, rather 

than their physical distance (e.g., the wavelength of light). The mental representations that 

maintain these so-called psychological distances supposedly determine how an agent infers an 

adaptive course of action in similar (or dissimilar) situations. Psychological distance is thought to 

encompass the full space of arbitrary task and stimulus dimensions, and is typically quantified 

using methods like Shepard’s own multidimensional scaling technique (Shepard, 1980). This 

approach to understanding generalization has successfully unified a wide variety of seemingly 

disparate generalization behaviors observed in humans and animals (Chater & Vitányi, 2003; 

Cheng, 2000).  

 

In contrast to a broad framework like the universal law of generalization, the framework typically 

used to describe generalization of learned motor behaviors is curiously domain-specific – here, 

generalization is thought to be driven exclusively by movement-specific tuning constraints in 
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motor regions of the brain (e.g., primary motor cortex, cerebellum, etc.; Berniker et al., 2013; 

Brayanov et al., 2012; Donchin et al., 2003; Gandolfo et al., 1996; Krakauer et al., 2000; Malfait 

et al., 2005; Shadmehr & Mussa-Ivaldi, 1994; Tanaka et al., 2012; Taylor et al., 2012; 

Thoroughman & Shadmehr, 2000; Thoroughman & Taylor, 2005). To date, a unifying 

perspective on the heterogeneous generalization behavior seen in human motor learning 

studies has been elusive. We suggest that this is partly because the scope of representations 

influencing motor generalization has been too narrow, focusing on movement directions, 

postures, joint positions, and the like. People’s explicit inferences about which action they ought 

to take in a given context should be considered as another fundamental component of motor 

generalization.  

 

In the current experiments, we tested this idea empirically by measuring people’s subjective 

similarity judgments over both one traditional dimension believed to dictate motor generalization 

(movement direction) and a novel abstract dimension (target shape). We found that subjective 

judgments about different kinematic contexts could explain a significant portion of variance in 

the generalization of learned sensorimotor behaviors (Experiment 1). Second, we found that the 

correlation between subjective similarity and motor generalization was above and beyond what 

could be explained by perceptual constraints (Experiment 2) or kinematics alone (Experiment 

3). Moreover, explicit instructions about the “consequential” dimension of movement contexts 

determined how people generalized (Experiment 4). Lastly, we confirmed that the above effects 

were driven by a top-down, cognitive component of motor learning, rather than an implicit, 

procedural component (Experiment 5). Taken together, our five experiments reveal an important 

role for cognitive inferences in shaping motor behavior. In our perspective, the underlying factor 

informing these inferences could be described as the psychological distance between training 

and transfer contexts. 

 

Our proposal is partly inspired by a growing body of work showing that many aspects of human 

motor learning can be traced to top-down declarative strategies that operate alongside implicit, 

procedural processes (Heuer & Hegele, 2011; Krakauer et al., 2019; McDougle et al., 2016; 

Taylor et al., 2014). Recent work has shown that performing even relatively simple motor 

learning tasks is a cognitive endeavour, leveraging mental imagery (Sheahan et al., 2018), 

working memory manipulations (Christou et al., 2016; McDougle & Taylor, 2019; Sidarta et al., 

2018), and long-term memory (Huberdeau et al., 2015). Indeed, top-down factors appear to 

directly shape generalization functions – when participants are asked to report their intentions 
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during adaptation tasks (i.e., verbalize where they are aiming their movements), explicit verbal 

reports capture much of the observed generalization function versus implicit adaptation alone 

(Heuer & Hegele, 2011; McDougle et al., 2017; Schween et al., 2018), and cognitive planning 

strategies appear to directly influence the dynamics of implicit learning (Day et al., 2016; 

McDougle et al., 2017; Schween et al., 2018, 2019; Sheahan et al., 2018). Taken together, both 

past research and the current findings support a key role for top-down cognitive factors in motor 

learning. 

 

Our study has several limitations that could be addressed in future work. First, we exclusively 

used explicit reports (subjective similarity ratings) to characterize psychological distances 

between movement contexts. While Experiment 2 controlled for the effect of making subjective 

similarity judgments on motor generalization, future studies could use more subtle methods to 

estimate individual’s contextual judgments, such as having them perform secondary decision-

making tasks with the relevant stimuli (e.g., classification tasks). In contrast, we deliberately 

chose not to record explicit aiming reports to quantify cognitive aiming strategies, as has been 

done in previous work on visuomotor learning (Taylor et al., 2014). While these data can be 

informative, we decided against this method primarily to avoid interfering with (or priming) 

participants’ volitional strategies, which is a potential consequence of requiring them to report 

their intentions (Heald et al., 2020; Maresch et al., 2020). 

 

Second, visuomotor adaptation is a relatively simple learning task. In the future, more 

challenging, ecologically relevant motor learning tasks (Haar & Faisal, 2020) could be used to 

examine the role of top-down inferences in real-world learning. For example, how do high-level 

inferences about novel tools shape how we initially decide to interact with them? We would 

expect similar results across a range of skill learning tasks, but these predictions remain to be 

tested. 

 

Lastly, our methods involved directly measuring participants’ contextual judgments, eschewing 

the need to quantitatively model the inference process. How should we model inference in 

motor generalization, particularly when we do not have direct access to participants’ judgments 

about different situations? One promising approach would be to leverage Bayesian models of 

generalization from more cognitive domains (Tenenbaum & Griffiths, 2001) and apply them to 

motor tasks. Indeed, promising probabilistic approaches have begun to be applied to the 

learning of different sensorimotor policies during motor adaptation (Heald et al., 2018, 2020). 
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Clustering algorithms are another promising approach, such as those used in modeling the 

learning of context-specific action policies during reinforcement learning (Collins & Frank, 2013). 

Future studies using such computational techniques could also be combined with 

neurophysiological data to both characterize and anatomically locate the cognitive 

representations that determine the generalization of motor skills. 

 

METHODS 

Participants 

A total of 96 right-handed (Oldfield 1971) participants (67 females; age range: 18-36) were 

recruited from the research participation pool of the Department of Psychology at Princeton 

University for course credits or cash. All sample sizes were decided a priori and are similar to 

those in previous publications (Poh and Taylor; 2019 Brayanov et al 2012), and supported our 

counterbalancing requirements. Each participant was randomly assigned to one of the five 

experiments. All experimental protocols were approved by the Institutional Review Board at 

Princeton University. 

 

Apparatus and Reaching Task 

The same apparatus was used in all five experiments in this study. Participants sat comfortably 

in a chair and made ballistic reaching movements while grasping the handle of a robotic 

manipulandum with their right hand (KINARM End-Point; BKIN Technologies). The participants’ 

arms were not provided with any external support, and all movements were restricted to the 

horizontal plane (see Figure 1A). All visual stimuli were projected to the participant via a 

horizontal display screen (LG47LD452C; LG Electronics) reflected onto a semi-silvered mirror 

mounted 6 cm above the robotic handle. The mirror occluded vision of the arm and hand (Figure 

1A, B) and the robotic handle, preventing direct visual feedback of hand position. Movement 

kinematics were recorded at 1 kHz.  

 

At the initiation of each trial, the robot rendered a spring-like load drawing the current position of 

the hand into a central starting location in the middle of the display. In Experiments 1 and 2, the 

central starting location was depicted by a gray empty circle 1 cm in diameter, while in 

Experiments 3-5, the starting location was represented by a gray hollow shape (diameter: ~1 

cm) that varied from “smooth” to “spiky” (see description of target shapes below). When the 

hand was within the starting location, the gray starting location turned white and a cursor (white 

filled) corresponding to the shape of the starting location appeared. After maintaining the hand 
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within the starting location for a random foreperiod (uniformly drawn from 100-1000 ms), a 

“beep” tone coincided with the presentation of a target (blue-filled shape) at a radial distance of 

9 cm. Participants were then instructed to perform a ballistic reaching movement that “sliced” 

through the target.  

  

Depending on the particular experiment and training conditions, movements were performed 

under one of three different forms of feedback - continuous cursor feedback, clamped feedback, 

or no feedback. On continuous feedback trials, feedback of the cursor remained visible 

throughout the duration of the outbound movement. Once movement extent exceeded 9 cm, the 

visual feedback of the cursor froze on the screen to provide static feedback of the final hand 

position for 1 s. On clamped feedback trials, the cursor was visible during the outbound 

movement and followed an invariant trajectory that was offset by ±20° relative to the target, 

regardless of the hand movement direction (Morehead et al., 2017). Once the movement extent 

exceeded 9 cm, the cursor was frozen on the screen for 1 s to provide static feedback of the 

final hand position when the workspace radius was crossed. Finally, on no feedback trials, the 

cursor was hidden throughout the trial.  

 

General Experimental Procedures  

We performed five experiments that measured people’s subjective judgments about different 

movement contexts, and their generalization of learned motor behaviors across those contexts. 

All experiments followed the same general experimental procedures which consisted of three 

phases. The first phase was a rating phase in which participants either judged which movement 

context presented was more similar to a reference movement context (Experiments 1, 3-5) or 

determined if they were perceptually similar to each other (Experiment 2). This was followed by 

a rotation adaptation phase in which all movements were performed under a visuomotor rotation 

confined to a single training/movement context (a single target direction/target shape). In the 

final generalization probe phase, we continued exposure to the visuomotor rotation in the 

training context while examining generalization of the learned motor behavior across different 

movement contexts using no feedback probe trials. The length of each phase varied slightly 

across experiments depending on the training conditions (see below).  

 

Design of Experiment 1: Movement direction subjective similarity and generalization. 

Experiment 1 (n=16) investigated if motor generalization from a single learning target direction 

to novel target directions (Figure 1A) echoed the subjective similarity between different 
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movement direction contexts. The experiment started with a rating phase where participants 

made pairwise comparisons between the act of reaching to a single “anchor” training target 

direction (chosen from 8 possible locations: 45°, 90°, 135°, 180°, 225°, 270°, 315°; 

counterbalanced across participants) versus 45 unique probe target directions (Figure 1B). The 

45 probe target directions spanned the range of ±180 with respect to the anchor target and were 

spaced at 1° intervals between 0 and ±10,  2° intervals between the range ±10 to ±20, 5° 

intervals between the range of ±20° to ±45°, and 45° intervals from ±45° to ±180°. This range 

was chosen so as to best capture the sensitivity of subjective ratings and the shape of the 

generalization functions observed in pilot experiments. The distribution of probe targets was 

also consistent with the range of movements examined in most previous studies of motor 

generalization. All movements were performed under continuous online feedback, with veridical 

feedback. 

 

After each pair of movements, participants were asked to judge “How similar were the two 

trials?” and verbally reported similarity based on a likert scale of 1-7 (with 1 being extremely 

dissimilar and 7 reflecting extremely similar). The trial pairs were not speeded, and the likert 

scale remained visible on the display until the participants responded. It is important to note that 

participants were not instructed to pay particular attention to any differences in movement 

kinematics (i.e. direction, speed, amplitude), and instead were asked to render their judgments 

based on the perceived contextual similarity between the pair of movements. In all, participants 

made 138 judgements of subjective similarity between movement pairs (6 repeats for each 

unique training and probe pair).  

 

Next, in the rotation adaptation phase, participants completed a visuomotor rotation training task 

which consisted of 80 individual movements with a ±45° rotation imposed on the visual 

feedback cursor (the sign of the rotation was counterbalanced across participants). All learning 

trials were performed at the anchor target direction. On a typical initial exposure to the 

visuomotor rotation, participants made a hand movement directly toward the anchor target 

direction which resulted in a cursor movement that veered off course by 45° in relation to the 

center starting location, as shown in the middle panel of Figure 1D. This required participants to 

adapt their movements in the opposite direction of the applied visual rotation to restore 

performance at the anchor target direction (Figure 1D).  
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Finally, in the generalization probe phase, participants completed 138 pairs of movements to 

assess the transfer of learned movements from a single learning target direction to novel target 

directions. The trial structure was similar to that in the rating phase and only differed in the type 

of feedback presented during the pairs of movements. Specifically, for each pair of movements, 

continuous visual feedback was provided for movements to the anchor target direction to 

reinforce the visual rotation that was previously learned. All reaches to probe targets were no 

feedback trials, allowing us to measure generalization.  

 

Design of Experiment 2: Perceptual confusability control experiment. Experiment 2 (n=16) 

tested the alternative hypothesis that it is the perceptual confusability, and not subjective 

similarity, between learning and transfer contexts that influences motor generalization. 

Moreover, this experiment also controlled for any confounding effects that the act making 

subjective similarity judgments may have on motor learning and generalization. The 

experimental procedure was similar to that of Experiment 1, except that participants were asked 

to judge if the two movement contexts presented were the same during the initial rating phase. 

That is, participants made pairwise comparisons between the act of reaching toward a single 

“anchor” training target versus the 45 unique probe target directions and were simply tasked 

with discriminating, i.e., “Were the 2 trials the same?” The question remained visible on the 

display until participants verbally responded yes/no and the experimenter recorded the 

response and initiated the next trial. 

 

Design of Experiment 3: Abstract contextual dimensions and motor generalization. So far we 

have focused largely on similarity judgements over traditional contextual dimensions, such as 

target direction, which is the dominant method for studying motor generalization. To determine if 

the relationship between similarity judgements and motor generalization can be applied to a 

more abstract contextual dimension, Experiment 3 (n=16) measured subjective similarity and 

motor generalization across different target shape “morphs.” These targets were always 

presented at a single fixed location.  

 

The target shape morphs used in the experiments were chosen from an equispaced linear 

mapping from “round” to “spiky” shapes used in a previous study (van Dam and Ernst, 2015). 

Briefly, each target shape morph differs in the length of each of its five points (the outer radius 

ro) and in the length of the intervening indents (the inner radius ri; see Figure 1, van Dam & 
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Ernst, 2015). Every shape in this “pointiness” scale can be described by a shape parameter p, 

which takes the ratio between the outer and inner radii:   

 

�1�  � �
��

��
 

 

Here, a shape parameter of 1 indicates that outer and inner radii are equal and therefore 

corresponds to a typical round shape. In contrast, a small p indicates that the outer radius is 

much larger than the inner radius and the shape is perceived as “spiky”. In the current 

experiment, we selected 24 shapes where p was evenly spaced between 0.1 to 0.9 (See Figure 

1B). (For detailed information about how each target shape morph was constructed see 

“Mathematical description of the target shapes” in van Dam & Ernst (2015).)   

 

During the rating phase, participants performed the match-to-sample subjective similarity 

judgment task (Figure 1B) to make pairwise comparisons between the act of reaching toward a 

single “anchor” training shape (either the most rounded or most pointed shape, counterbalanced 

across participants) versus 23 probe target shapes. We emphasize that, for all trials and 

participants, the target was always presented at a fixed location, regardless of its shape. After 

each pair of movements, participants judged, “How similar were the 2 target shapes” using a 

likert scale of 1-7 (with 1 being extremely dissimilar and 7 reflecting extremely similar). The likert 

scale remained continuously visible on the screen until participants verbally responded. In all, 

participants made 120 judgments of subjective similarity between the two target shapes (5 

repeats for each unique anchor target shape and probe target shape pair).   

 

In the rotation adaptation phase, participants completed 80 individual movements with a ±45˚ 

visuomotor rotation imposed on the visual feedback (rotation sign counterbalanced across 

participants), only being exposed to the anchor/training shape. Finally, the generalization probe 

phase consisted of 120 pairs of movements to assess generalization from the training target 

shape to novel probe shapes (5 repeats for each unique anchor target shape and probe target 

shape pair). Similarly, for each pair of movements, rotated visual feedback was provided on the 

first movements toward the anchor training shape, but feedback was not shown on movements 

toward the probe target shapes.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.09.430542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430542
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Design of Experiment 4: Explicit contextual instructions and generalization. Experiment 4 (n=32) 

examined how instructions could bias participants toward different dimensions of the movement 

context (i.e., target locations versus target shapes), resulting in downstream effects on 

generalization. The experimental procedure was similar to Experiment 3, with two key 

differences: First, target location and target shape morph were simultaneously varied in a fully 

factorized design (i.e., an equal number of unique target morphs were experienced at each 

target direction). Second, slightly longer trial phases were used to account for the fully factorized 

design. 

 

In the initial rating phase, participants compared movements made toward the anchor training 

target/shape (fixed at 0˚ or 180˚, with the target shape either the most rounded or most pointed 

shape, counterbalanced across participants) and probe target movements which varied in 

direction (12 target locations spaced every 15˚ away from the anchor training target) and target 

shape (12 different shapes morphs from “round” to “spiky”). To emphasize particular contextual 

dimensions, two separate groups of participants were given different instructions: In the 

Direction Emphasis group, participants were told to attend to the target direction, and 

subjectively judge “How similar were the 2 movement directions?”, irrespective of target shape. 

In contrast, in the Shape Emphasis Group, participants were explicitly instructed to attend to the 

target shape and subjectively judge “How similar were the 2 target shapes?”, irrespective of the 

target direction. Overall, participants made 144 subjective similarity judgments (6 repeats for 

each unique anchor target location/shape and probe target location/shape pair).  

 

The rotation adaptation phase consisted of 80 individual movement trials at the anchor training 

target location/shape with the visual feedback rotated by 45°. Finally in the generalization probe 

phase, participants performed a total of 144 pairs of movements to measure the generalization 

with respect to each contextual dimension. For the Direction Emphasis group, participants were 

instructed to “Adjust based on how similar the movement directions are” before each pair of 

movements, to probe generalization over the direction dimension. In contrast, in the Shape 

Emphasis group, participants were instructed to “Adjust based on how similar the movement 

directions are” to probe generalization over the shape dimension. We note that no detail about 

the nature of this “adjustment” was given in the instructions, as to avoid biasing participants in 

any way. 
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Design of Experiment 5: Subjective similarity and implicit motor learning. Experiment 5 (n=16) 

investigated if generalization over abstract contextual dimensions could be observed in purely 

implicit motor learning. Moreover, this experiment was designed to further examine the small 

degree of generalization we saw in the Shape Emphasis group over the “irrelevant” dimension 

of target direction in Experiment 4 (Figure 5D), testing our hypothesis that this was due to the 

kinematic generalization of implicit learning. The experimental procedure mirrored Experiment 3, 

except that the type of rotated visual feedback provided during the rotation adaptation phase 

was different (see below), as were the length of the rating and generalization phases. First, in 

the rating phase, participants performed a total of 168 pairwise comparisons to judge how 

similar the probe target shapes were to the anchor/training shape (7 repeats for each unique 

anchor target shape and probe target shape pair). Next in the rotation adaptation phase, to 

measure purely implicit learning, we imposed task-irrelevant error-clamp feedback (Morehead et 

al. 2017). Here, the visuomotor rotation was imposed by restricting the path of the cursor along 

a constant 20° angle with respect to the target (with rotation direction counterbalanced across 

participants). Critically, participants are firmly instructed to never aim their reaches elsewhere, 

aiming only directly toward the anchor training target and ignoring the offset feedback. This task 

has been shown to successfully isolate implicit learning; that is, participants’ movement 

directions undergo significant adaptation in the direction opposite of the error, and this learning 

occurs fully outside awareness (Tsay et al., 2020). Participants trained for a total of 80 trials 

under the error-clamped visual feedback, before generalization was assessed to the probe 

target shapes in the generalization probe phase. Here, participants performed 168 movement 

pairs to assess the generalization of implicit motor learning over an abstract, non-kinematic 

dimension (target shape).  

 

Data Analysis 

First, baseline movement biases were defined as the mean movement endpoint at each target 

location (or target shape) in the non-feedback match-to-sample/judgment block (Figure 1D). 

Movement endpoints were computed as the direction of the vector connecting the participant’s 

hand location at movement onset to the location when movements exceeded a radial distance 

of 9 cm. Movement onset was defined when the movement speed threshold first exceeded 5 

cm/s. For each participant’s movement data, outliers were removed prior to analysis; we defined 

outlier movements as any movements that were more than 3 standard deviations from the mean 

movement direction across experiment. This resulted in excluding, across the five experiments, 

an average of 0.18 ± 0.22% of trials (mean ± 95% C.I.). Generalization functions were quantified 
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by taking the mean endpoint error at each probe location, and subtracting the relevant baseline 

bias. Adaptation learning curves for each experiment (e.g., Figure 2A) were similarly baseline-

corrected and then averaged across participants. Generalization “decay” functions for 

experiments that utilized different target directions (e.g., Figure 2E) were computed by 

averaging data at each probe, with probes defined by their absolute angular distance from the 

anchor target. For visualization of generalization decay functions, we independently z-scored 

each average function (both rating and movement) for each participant.   

 

Direct comparisons between generalization decay functions for subjective ratings versus motor 

behavior were conducted via linear regression, regressing the rating function of interest (e.g., 

similarity, perceptual) onto the movement generalization function. We then computed an R-

squared metric for each participant to quantify the amount of movement generalization variance 

that could be explained by subjective judgments. Because we did not have similarity ratings in 

Experiment 2, we performed this analysis in a cross-validated manner, taking the mean 

similarity judgment function from Experiment 1 and regressing it onto each individual 

participant’s movement generalization function in Experiment 2. 

 

For the correlation analysis (Figure 7) we derived a decay rate from each generalization 

function. To do this, we fit their decay functions with an exponential function using the MATLAB 

fit function, with free parameters for a scaling factor (a) and a decay rate (b):  

 

(2)   y = -a * e-bx 

 

For between-participant correlations, we normalized (z-scored) decay rates for participants’ 

rating and movement generalization functions independently within each experiment, then 

computed the (Pearson) correlation between subjective and motor generalization functions 

pooling across experiments. This correlation analysis was limited to Experiments 1, 3, and 4, as 

Experiments 2 and 5 did not have, respectively, subjective ratings (Experiment 2) or 

performance-based reaching behavior (i.e., the task-irrelevant error-clamp method was used; 

Experiment 5). Similarly, to compute the 50% just-noticeable-difference (JND) in the perceptual 

discrimnation task (Experiment 2), we fit an exponential decay function (Equation 2) to each 

participant’s perceptual reports (collapsed by absolute probe distance) and solved the resulting 

equation analytically at y = 0.50. 
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