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Abstract

From learning to play video games to using novel tools, hu-
mans are able to acquire a variety of complex mappings be-
tween their actions and arbitrary outcomes. In addition, once
they have learned such mappings, they often have to use them
sequentially to achieve goals, i.e., planning. In this work, we
study how the learning of a novel mapping interacts with plan-
ning in the context of grid navigation. In order to do so, we de-
veloped a computer-based game where subjects have to move
a cursor from start to target locations using the keys of their
keyboard. Importantly, to more closely resemble the complex-
ity of the mappings that people acquire in their lives, the cursor
movement was determined by a non-trivial rule inspired by the
movement of the Knight chess piece. In Experiment 1, we
show that participants were able to improve their performance
in our task, though not always arriving to the targets optimally.
Additionally, we explored different classes of cognitive mod-
els and found that a model that includes Bayesian mapping-
learning, path search and habit formation components best de-
scribed the data. In Experiment 2, we asked whether breaking
down the task into its mapping-learning and planning compo-
nents could improve participants’ performance. Indeed, we
found that exposing participants to the mapping component
of the task without having to plan, provides a performance
improvement when exposed to the full task later. Crucially,
this improvement does not occur if subjects are exposed to the
planning component of the task prior to doing it fully. Overall,
these results suggest that in order for planning processes to be
effectively deployed, the mapping of actions should be learned
first.
Keywords: planning; Bayesian learning; motor learning.

Introduction
During their lifetime, humans can develop a wide and com-
plex repertoire of skills such as dancing, swimming, riding a
bicycle, playing musical instruments or playing video games.
The intricate nature of these activities has made their scien-
tific study equally complex. On the one hand, humans have to
figure out the motor commands that lead to the desired out-
comes. For example, which configuration of the hand pro-
duces a given chord on the guitar or what button presses
make a character jump or walk in a video game? The for-
mation of this mapping is arguably one of the most impor-
tant steps to develop a skill (Fitts & Posner, 1967; Adams,
1971; Ackerman, 1988; Newell, 1985, 1991). Surprisingly,
how the brain learns these novel and, often arbitrary, map-
pings remains poorly understood. A second challenge arises
as the majority of complex skills are extended in time, in-
volving sequencing together a set of actions with the map-
ping to accomplish goals. For example, a given combination

of chords is necessary to generate a song, and sequences of
button presses make players navigate through different levels
of a video game. The dependence of goals on the concate-
nation of actions gives rise to one of the key processes of
human cognition: planning (Hunt et al., 2021). In the current
work we aim to understand how the learning of a sensorimo-
tor mapping interacts with planning to acquire complex skills.
Additionally, we aim to provide a computational account of
the potential mechanism of interaction.

Developments on motor learning and planning research
currently have no unifying framework on this matter. On the
one hand, the acquisition of a novel mapping has been studied
in sequence learning tasks where people have to learn what
action to take, normally key presses, when arbitrary visual
stimuli are presented on a computer screen (Balsters & Ram-
nani, 2011), however, there is generally no overarching goal
towards which people can freely use the mapping, i.e., choos-
ing their own sequence of actions, such as in video games.
Additionally, in most sequence learning tasks, the sequence
to be learnt is specified by the experimenter (Korman, Raz,
Flash, & Karni, 2003; Kami et al., 1995). This limits con-
siderably the planning aspect of the tasks. One exception
is the work on grid navigation (Fermin, Yoshida, Ito, Yoshi-
moto, & Doya, 2010; Bera, Shukla, & Bapi, 2021b, 2021a),
where people have to move a cursor to target locations on
a grid using keys with an unknown movement-mapping. In
this task the learned mapping can be freely manipulated to
achieve the goal of the task, potentially involving planning
processes. However, the computational mechanism of how
people succeed in scenarios like this is still unknown.

On the other hand, planning research has focused on how
humans or artificial agents can maximize their future rewards
following a series of actions. Reinforcement learning algo-
rithms have been developed to achieve this goal, particularly
model-based algorithms (Hunt et al., 2021). In these for-
malisms, a model of the environment is assumed to be known
and used to simulate the outcomes of future decisions with
the goal of choosing the ones that are the best. Great progress
has been made on how to make planning a tractable compu-
tation (Schrittwieser et al., 2020; Hunt et al., 2021) and also
on how humans actually plan (van Opheusden et al., 2021).
However, in this research, the actions on which planning op-
erates (the mapping) are often assumed to be known. This is
at odds with real life learning scenarios where humans have
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Figure 1: Experiment 1 task and behavioral results. Left: Par-
ticipants moved a cursor (frog) from start to target locations
(clovers) using eight keys of their keyboard associated with
the movement rule of the Knight. For simplicity not all the
15x15 states are shown. Top-right: Points over trials. The
solid line indicates the median and the shading the interquar-
tile range. Bottom-right: Proportion of trials in the task that
participants miss the target, that arrive sub-optimally or opti-
mally. The height of the bars represents the median and the
error bars the interquartile range.

to accomplish goals while still having uncertainty about what
their actions do.

In the present work we developed a grid navigation task
that allows the study of mapping learning and planning, and
how they might interact to accomplish the task’s goals. In our
experiments participants moved a cursor from start to target
locations using a rule based on the Knight chess piece. This
mapping could be more closely comparable to the complexity
of mappings humans acquire in real world scenarios, involv-
ing multiple actions with a non-trivial rule. Importantly, this
contrasts with previous studies where either there is no map-
ping or the action space is intuitive or small (Kahn, Karuza,
Vettel, & Bassett, 2018; Fermin et al., 2010, 2016).

Lastly, there has been a recent interest in the planning lit-
erature in designing behavioral tasks that better resemble the
complexity of activities that humans perform (van Opheusden
& Ma, 2019; van Opheusden et al., 2021; Schulz, Klenske,
Bramley, & Speekenbrink, 2017), but that are also tractable
to cognitive modelling (e.g., playing board games). We be-
lieve our task is a step in this direction, as the planning tra-
jectories involved in our navigation task are non-linear given
the Knight rule, and are also based on a mapping that is being
learned in parallel.

Methods
Participants
Seventy five undergraduate students (33 males, 39 females, 3
non-binary and 1 preferred not to say; mean age = 19.7, sd
= 1.7) from Princeton University were recruited through the

Psychology Subject Pool. The experiments were approved
by the Institutional Review Board (IRB). All participants pro-
vided informed consent before performing the experiment.

Apparatus and task design
All experiments were performed in person using the same
computer equipment. Stimuli were displayed on a 60 Hz
Dell monitor and computed by a Dell OptiPlex 7050’a ma-
chine (Dell, Round Rock, Texas) running Windows 10 (Mi-
crosoft Co., Redmond, Washington). Participants made their
responses using a standard desktop keyboard or mouse. All
experiments were run on the browser and hosted on Google
Firebase. Subjects were seated in front of the computer and
were asked to follow the instructions to begin the task.

In a 15x15 grid, participants had to move cursor in the form
of a frog to target locations represented by clovers (Figure 1).
The cursor could only move in directions determined by the
movement rule of Knight chess piece. On a given position of
the grid, the locations where the cursor could move to were
shaded in orange. From a pilot study we found out that with-
out this shading participants’ performance was considerably
poor. We believe the reason for this was because in addition
to learning the mapping and planning with it, subjects had
to figure out the scope of the mapping, which considerably
increased the complexity of the task. Subjects moved the cur-
sor using eight keys of their keyboard with the exception of
one condition of Experiment 2 where they used their mouse
(see below). The task consisted of five hundred trials with a
time limit of two hours. Twenty different pairs of start-goal
locations were presented throughout the task; the order was
randomized and each pair showed up once before seeing all
the pairs again. The cursor always appeared at the same start-
ing location, and the targets were placed in grid states that
were either one or three moves away from the cursor (see
below). Importantly, only one pair of start-target locations
appeared for a given trial. If participants arrived at the target
using the minimum number of moves, they received one hun-
dred points. Then, they would lose five points for every extra
move. If they did not arrive at the target location in ten sec-
onds, it was considered a miss, they received zero points and
moved on to the next trial. A similar points system has been
used in other grid navigation studies (Bera et al., 2021a).

Computational modeling
In order to explore the cognitive mechanisms that could
give rise to participants’ performance in our task, we as-
sessed three computational models that incorporate mapping-
learning and planning into the computation of action values
as well as a persistence component aiming to capture habit-
ual, repetitive behavior. We fitted these models to the data of
Experiment 1.

Bayes + BFS model: In our first model, we assume that
the learning of the mapping occurs using Bayesian updating.
Previous work has shown that humans are able combine their
past experiences and novel observations in a way that is con-
sistent with this framework (Körding & Wolpert, 2006). In
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Figure 2: Modeling results from Experiment 1. Left: Sum of AIC and BIC across participants for each model. Lower values
indicate a better fit. Middle: Proportion of the variability explained by the best fitting model (Bayes + BFS + Persistence) in
our data based on the negative entropy and negative cross-entropy. Right: Persistence weight in our winning model.

particular, for every key, the cursor movement direction x is
assumed to be generated by a Categorical distribution:

xk ∼Cat(θ1, ...,θ8) (1)

where (θ1, ...,θ8) are the true probabilities that the key k
moves the cursor to the eight possible directions of the Knight
rule. These probabilities are unknown but can be inferred us-
ing Bayes rule. In order to do that, a prior distribution over
(θ1, ...,θ8) has to be specified which represents the initial
knowledge of the mapping. For reasons of conjugacy, it is
convenient to choose a Dirichlet distribution:

(θ1, ...,θ8)∼ Dir(1, ...,1) (2)

making the initial parameters equal to 1 gives no preference
for any direction a priori. Then, the posterior belief about the
mapping is described by another Dirichlet distribution:

(θ∗1, ...,θ
∗
8)∼ Dir(α1, ...,α8) (3)

αn = 1+
t

∑
j=1

1( j = i) (4)

where ∑
t
j=11( j = i) is the number of times the key was ob-

served to go to the i direction up to trial t. The expected value
of the parameters (θ∗1, ...,θ

∗
8) can be computed to have a vec-

tor of probabilities instead of a vector of random variables:

πi =
αi

∑
8
i=1 αi

(5)

πi is the probability that the cursor goes to the i direction.
That is, if a key is pressed, the cursor can end up in the
eight locations specified by the Knight rule with probabili-
ties π. In model-based reinforcement learning π corresponds
to the transition probabilities for a given state and action.
Our model is a special case of these algorithms for which
the tranistion probabilities are the same for all states. These
probabilities are then used to compute the expected distance
to the target in the next time step if that key was pressed:

E(d) =
8

∑
j=1

diπi (6)

where di is the Knight distance to the target at the location
the cursor would be if it moved to the i direction. In or-
der to compute d, we used Breadth First Search (Erickson,
2019) on a Knight graph. In this structure, every node repre-
sents a grid state and nodes are connected among themselves
if the cursor can reach them using the Knight rule. BFS is
thought to represent the planning process in our model and
Algorithm 1 shows the pseudocode to implement it. Briefly,
what BFS does is to search on the Knight graph by first vis-
iting the nodes that are one move away from the current lo-
cation, then it checks if the target is there; if it isn’t, then it
continues searching in the nodes that are two moves away and
so on. It continues this process until it reaches the target. We
can then use −E(d) to represent the value of pressing a given
key. Changing the sign to negative makes lower distances
more valuable.

Crucially, equation 6 formalizes the interaction between
our learning (Bayes) and planning component (BFS): they are
combined to obtain how valuable the actions are on a given
state. The values −E(d) for each key can then be plugged
into a Softmax function to obtain the probability that key k is
pressed at time step t :

φ
k
t =

e−βE(d)k
t

∑
8
k=1 e−βE(d)k

t
(7)

Rt ∼Cat(φ1
t , ...,φ

8
t ) (8)

where β is the inverse temperature parameter and reflects de-
cision noise. Rt is the response at time step t. This model has
one free parameter: β.

Bayes + BFS + Persistence model: We considered a vari-
ation of our previous model which has a tendency to persist
on responses that have been chosen in the past. We believe
this is a plausible mechanism of choice when rewards are in-
frequent, and which could reflect habit formation. Similar
mechanisms have previously been used in multi-arm bandits
decision-making tasks (Miller, Botvinick, & Brody, 2021). In
particular, the persistence component at time step t for key k
is computed as follows:
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Pk
t = Pk

t−1 +η(r−Pk
t−1) (9)

where r = 1 if a response for key k is generated and 0 oth-
erwise. η is analogous to a learning rate parameter, here re-
flecting the weighting of recent responses. This algorithm is
equivalent to a running average of the history of responses,
where Pk

t will be higher the more responses have been given
to key k in the past. Pk

t can be used to compute probabilities
in generating responses as before:

φ
k
t =

eβPk
t

∑
8
k=1 eβPk

t
(10)

Then, equations 7 and 10 are linearly combined using the
weight ω:

φ̂t = ωφ
Bayes+BFS
t +(1−ω)φPersistence

t (11)

Rt ∼Cat(φ̂1
t , ..., φ̂

8
t ) (12)

This model has three free parameters: β, η and ω.
Persistence model: In order to evaluate the contribution

of the persistence component on its own, we also considered
equation 9 and 10 as a separate model. This model has two
free parameters: η and β.

Random model: Finally, as a lower boundary, we evalu-
ated a random model, which assigns equal probability to all
responses at every time step:

Rt ∼Cat(
1
8
, ...,

1
8
) (13)

Model fitting and model evaluation.

We fitted the proposed models to our data using Bayesian
Adaptive Direct Search (Acerbi & Ma, 2017). Then we ob-
tained the Akaike Information Criterion (Akaikei, 1973) and
the Bayesian Information Criterion (Schwarz, 1978) to com-
pare the models while penalizing for the number of parame-
ters. Finally, we computed the negative entropy and the nega-
tive cross entropy as a measure of objective information con-
tent. The negative entropy represents the upper boundary of
any probabilistic model (Shen & Ma, 2016). We estimated
this quantity following the procedure described by Grass-
berger (Grassberger, 1988, 2003). The negative cross-entropy
represents how much we can know about the data given an
imperfect model. An estimator of the negative cross entropy
is the logarithm of the likelihood function evaluated at the
maximum likelihood estimates of the parameters, which we
had already obtained when fitting our models. Based on the
negative entropy and the negative cross-entropy we computed
the proportion of the variability in our data that was explained
by our best model.

Experiment 1
The goal of Experiment 1 (n=25) was to explore human per-
formance on a task that necessitated simultaneous mapping-
learning and planning. Additionally, we assessed whether
their behavior can be captured by a model incorporating
Bayesian updating, path search, and an optional persistence
component, which could reflect learning, planning and habit
formation. In the experiment, participants performed the grid
navigation task shown in Figure 1, where the cursor was con-
trolled using eight keys of the keyboard (A,S,D,F,H,J,K and
L). Each key was associated with a move of the Knight. The
particular direction each key moved the cursor to was ran-
domized across participants. The target locations in this ex-
periment were always three moves away from the starting
location. It is important to notice that, since the movement
directions were shaded in orange, participants didn’t have to
learn the rule itself, but its mapping to the keys.

Algorithm 1: BFS algorithm to compute Knight dis-
tance. Note:The function Inside returns whether the
new location is inside the board.

Data: Size of the gird: M, N; Position of the cursor:
X, Y; Position of the target: S, T.

Result: Knight distance to the target
int dx = [1, 2, 2, 1, -1, -2, -2, -1] ;
int dy = [2, 1, -1, -2, -2, -1, 1, 2] ;
Queue k;
k.push([X ,Y ]);
bool visited[M+1][N +1] = False;
visited[X ;Y ] = True;
int moves[M+1][N +1] = 0;
while k ̸= 0 do

z = k.pop();
if z[0]==S and z[1] == T then

return moves[z[0]][z[1]];
end
for i = 0; i < 8; i++ do

newx = z[0]+dx[i];
newy = z[1]+dy[i];
if
Inside(newx,newy,M,N)&&!visited[newx][newy]
then

visited[newx][newy] = True;
moves[newx][newy] = moves[z[0]][z[1]]+1;
k.push([newx][newy]);

end
end

end

Results
Behavioral Results: Given the complexity of the mapping and
planning in our task, we did not have a priori expectations that
subjects would be able to improve their performance. How-
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Figure 3: Behavioral results from Experiment 2. Left: Participants’ points over trials for the mapping (gold) and planning
(purple) conditions. The red line indicates the beginning of the full task as in Experiment 1. Middle: Participants’ points during
the full task for the mapping condition (last three hundred trials) compared to performance of subjects from Experiment 1.
Right: Participants; performance in the full task for the planning condition compared to performance of subjects in Experiment
1. Solid lines represent the median and the shading the interquartile range. Asterisks at the top indicate significant differences
between both group (p < 0.5).

ever, in the top-right panel of Figure 1, it is clear that we ob-
served a canonical learning function. Performance appears to
reach an asymptote at around 40-80 points, which means that
subjects sometimes still did not arrive at the target or arrive
suboptimally by the end of the experiment. In the bottom-
right panel of Figure 1 we show the proportion of trials in
the experiment that participants miss the target, arrive sub-
optimally (in more than three moves) or arrived optimally (in
three moves). Overall, in more than seventy percent of the tri-
als participants either miss the target or arrived suboptimally,
which could reflect the complexity of the mapping and plan-
ning involved – a point we will explore in Experiment 2.

Modelling Results: In Figure 2 we show the modelling
results. According to the sum of AIC and BIC across partic-
ipants, the models with the persistence component (either on
its own or with the Bayes + BFS components) clearly outper-
form the other models. Crucially, the persistence model on
its own has lower performance than the Bayes + BFS + Per-
sistence model (∆ summed AIC = 3.8x103, ∆ summed BIC =
3.5x103) which suggests that the mapping-learning and plan-
ning components are important elements of subjects’ choices.
Additionally, in the middle panel, we note that there was a
considerable variability in how good our best model (Bayes +
BFS + Persistence) was able to explain our data, ranging from
18 to 75%. Finally, in the right panel we show the weight
of the persistence component in our winning model. The
high values of this parameter suggest that participants may
have reduced the complexity of the task by repeating previ-
ous choices regardless of their optimality.

Experiment 2
In Experiment 1 we found that participants’ improved their
performance in our task though not always arriving opti-
mally to the target. We also found that the mapping-learning
and planning components were important elements of partic-
ipants’ choices given that, when included in a model, they
outperformed a pure habit formation model. In Experiment 2

we asked whether breaking down the task into its mapping-
learning and planning components would significantly im-
prove performance. In order to do so, we ran two experi-
mental conditions.

Mapping: In this condition (n=25), our goal was to test
whether participants would improve their performance in our
task by being exposed a priori to the mapping-learning com-
ponent while removing the planning component. In order
to do so, subjects performed the first two hundred trials of
the experiment with target locations that were only one move
away from the starting point. This way, a sequence of key
presses would not need to be computed, as it would be the
case for target locations being several moves away. In addi-
tion, participants were instructed to use those trials to learn
the direction each key moved the cursor to. In the last three
hundred trials, participants experienced the full task as in Ex-
periment 1, with target locations being three moves away.

Planning: In this condition (n=25), we evaluated whether
participants would improve their performance by being ex-
posed only to the planning component of our task while re-
moving the mapping-learning. In order to isolate planning,
participants performed the task using their computer mouse
for the first two hundred trials, rather than using their key-
board. As such, no novel movement-mapping had to be
learned as participants could leverage their existing mapping
of a computer mouse. Participants had to click on the loca-
tions of the grid where they wanted the cursor to move to, and
the only valid locations were the ones shaded in orange ac-
cording to the Knight rule. This way, they would not have the
opportunity to experience the mapping, though they would
have experience on how to arrive at the targets. In the last
three hundred trials, participants were exposed to the full task
as in Experiment 1.

Results
In Experiment 2, we tested whether prior experience with
the mapping or planning component would benefit the sub-
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sequent performance in our task. In the left panel of Figure 3
we observe that before the full task began (red line), the plan-
ning condition significantly outperformed the mapping one
(p < 0.05) early in learning. However, this relation reversed
by the time the full task began, where the mapping group had
significantly better performance (p < 0.05) for around two
hundred trials until both conditions reached around the same
level of performance. Additionally, we compared the perfor-
mance of these two conditions with Experiment 1, when par-
ticipants were performing the full task. In the middle panel of
Figure 3 we can see that training with the mapping before the
full task provides a significant advantage over a group that
started with the full task from scratch. Having experienced
the planning component alone does not provide any benefit
as compared to Experiment 1 (right panel of Figure 3), sug-
gesting that the most efficient way to acquire a new skill is to
learn the mapping before planning.

Discussion
When acquiring novel skills, humans face the double chal-
lenge of learning what the outcomes of their actions are and
then how to use them sequentially to achieve future goals.
The study of this matter lies at the heart of motor learning
and planning research. However, both fields have addressed
the topic mostly from separate fronts. On the one side, mo-
tor learning research has focused on sequence learning tasks
where the planning component is constrained or limited by
the experimenter. On the other side, planning studies rarely
focus on situations where the action mapping is still uncertain
or unknown. In the current work, we aimed to address this
gap by exploring how mapping-learning and planning could
interact in a task were both components are likely to be in-
volved.

In Experiment 1, we found that participants were able to
improve their performance over trials, although overall they
did not choose optimal trajectories to the targets most of the
time. This is potentially a consequence of the complexity
of planning with a non-trivial action mapping, which may
mirror real-life skills where optimal performance may not be
achieved early on in training. Indeed, there has been renewed
interest in developing experimental tasks that are sufficiently
complex that capture the complexity of many scenarios that
humans face in real life where there are multiple actions to
choose from and multiple ways of combining them to achieve
goals (van Opheusden & Ma, 2019; van Opheusden et al.,
2021). Yet, at the same time that are still tractable enough for
the use of relatively simple models that shed light on human
cognitive mechanisms.

With this in mind, we note that our best model explained
up to 75% of the variability in our data for some participants,
but it was as low as 18 % for others, which leaves consid-
erable room for improvement. In this model, the persistence
component had a high influence in the overall output (Figure
2, right), which suggests that participants generated repeti-
tive patterns of responses, potentially indicating the formation

of a habit. Importantly, a pure persistence model performed
considerably worse than our best model, suggesting that the
mapping-learning and planning components are important el-
ements of participants’ choices in the task.

We have considered BFS as a starting point to represent
planning as it is relatively simple to implement given its un-
informed structure. This implies that no particular planning
trajectory is favored in the search for the goal. However, this
is not necessarily a realistic assumption in human planning.
For example, in our task, trajectories going in the direction of
the target might be favored with respect to trajectories going
away from it. This simple scenario is not captured by BFS.
Heuristic-based search algorithms like Best First Search can
instead be used to specify preference over certain trajectories
using a value function. For example, in a recent work van
Opheusden and Ma (2021) used this algorithm to model how
people plan in the 4-in-a-row game, pointing out that people
might prune variations of the game that do not seem promis-
ing or intuitive, such as going away from the target in our
task.

In Experiment 2 we explored whether breaking down
the task into its mapping-learning and planning components
would significantly improve performance as compared to Ex-
periment 1. Indeed, we found that prior exposure to the
mapping-learning, but not the planning component, provides
a performance improvement in the full task. One explanation
for this could be that the planning component was not as cru-
cial to succeed in the task as we thought it would be. There-
fore, having prior experience with it does not provide a signif-
icant advantage as compared to starting from scratch. Future
work can test whether this hypothesis is true by making peo-
ple find trajectories to the targets that are more involved, for
example by adding obstacles or increasing the the distance to
them. Remembering the trajectory solutions to those situa-
tions could turn out to be meaningful when the task has to be
executed with a different controller (keys instead of mouse).

In addition, our results suggest that planning can be per-
formed more efficiently when the action mapping has already
been acquired. If both the mapping-learning and planning oc-
cur simultaneously since the beginning, performance can be
lower as we observed in Experiment 1. This could shed light
on the effectiveness of different cognitive strategies when ac-
quiring a new skill. For example, we would be able to know
why an amateur guitarist would improve slower if trying to
play songs right from the begining instead of listening to the
instructor’s advice of practicing with scales first.

In summary, this work explores human performance in a
behavioral tasks that involves learning a complex mapping
and generating sequential decisions with it. We believe this
type of experiments are a rich source of data to understand
the interaction the cognitive mechanism that allow humans to
acquire their vast repertoire of skills during their life.
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