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Abstract  
 
Motor learning has traditionally been viewed as a unitary process that operates outside of conscious 
awareness. This perspective has led to the development of sophisticated models designed to elucidate the 
mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, 
emphasizing the contribution of explicit strategies in simple sensorimotor learning tasks, and how these 
insights underpin a comprehensive model of strategy use in complex motor skills. As a starting point, we 
propose three general strategic processes: Reasoning, the process of understanding action-outcome 
relationships; Refinement, the process of optimizing sensorimotor and cognitive parameters to achieve the 
motor goal; and Retrieval, the process of inferring the context and recalling a control policy. We anticipate 
that this 3R framework for understanding the role of explicit strategies in motor learning will open exciting 
avenues for future research at the intersection between cognition and action. 
 
Acknowledgments 
 
We thank Sabrina Abram, Tianhe Wang, and Elizabeth Cisneros for their helpful comments on the 
manuscript. This work is funded by the National Institute of Health (RBI: R35NS116883; R01DC0170941; 
JST: 1F31NS120448). The funders had no role in study design, data collection and analysis, decision to 
publish or preparation of the manuscript. 
 
 
 
  



 

I. The contribution of strategy use in a wide range of simple sensorimotor learning tasks 
 
Glance through any neuroscience textbook and motor learning, the process of refining our movements 
through feedback and practice, will be described as an implicit, non-declarative phenomenon (Figure 1). 
Indeed, this description matches the phenomenology of skilled performers who “let the body do the 
thinking” when executing a highly practiced motor skill (Jackson, 1996). In the domain of cognitive 
science, foundational work motivating this perspective stems from the classic studies with Patient H.M., an 
individual who had undergone bilateral medial temporal lobectomy and subsequently developed severe 
anterograde amnesia (Scoville & Milner, 1957). Despite having no recollection of performing a mirror 
drawing task, H.M. exhibited striking improvements over multiple sessions of practice (Milner, 1962). This 
monumental finding helped inspire taxonomies of human learning and memory that place motor learning 
squarely in the domain of “implicit memory” (Squire, 2004; Squire & Zola-Morgan, 1991).  
 

 
Figure 1. Classic and revised taxonomies of long-term memory. A revision of the classic taxonomy proposed by Squire and 
Zola (1996) (grey lines), with motor skills tapping into both explicit and implicit memory (dashed red line). 
 
This simplified perspective overlooks a crucial distinction: While H.M. may not have retained explicit 
memory of learning between sessions, he may well have employed explicit strategies for learning within 
each session (Krakauer et al., 2019). Recent research provides compelling evidence in support of this 
hypothesis, showing not only the operation of multiple learning processes during mirror drawing, but also 
that the explicit component of learning is the primary impetus for improvement (Wilterson & Taylor, 2021). 
Indeed, experts can make rapid and flexible motor corrections, suggesting that even when behavior seems 
automatic, there remains considerable cognitive control. More generally, it would be difficult to find a 
motor skill that does not require the application of explicit strategies (Stanley & Krakauer, 2013).  
 
Broadly speaking, a division can be made between implicit learning and explicit strategy. Implicit learning 
plays a crucial role in executing well-calibrated movements, a non-declarative process that operates 
automatically and outside of conscious awareness (Mazzoni & Krakauer, 2006; R. Morehead et al., 2017; 
Tsay et al., 2020). Conversely, explicit strategy is responsible for selecting and planning movements, a 
declarative process that operates under volitional control (Deng et al., 2022; Hegele & Heuer, 2010; H. E. 
Kim et al., 2020; Lillicrap et al., 2013; McDougle et al., 2016; Ryan Morehead & de Xivry, 2021; Seidler 
& Carson, 2017; Taylor et al., 2014; Werner et al., 2015).  
 
Error-based motor learning, the process of refining movements through vectorial sensory feedback, has 
provided the most comprehensive test bed for characterizing the contribution of multiple learning processes 
(Anguera et al., 2010; Benson et al., 2011; Bromberg et al., 2019; Coltman et al., 2021; de Brouwer et al., 
2018; Haith et al., 2015; Huberdeau et al., 2015; H. E. Kim et al., 2020; Taylor et al., 2014). Traditionally, 
error-based learning has been characterized by implicit changes in heading angle (i.e., reach direction) in 
response to perturbed sensory feedback (e.g., Figure 2A; rotation of the visual feedback) (Held & Hein, 
1958; Helmholz, 1909). These implicit changes in heading remain robust (also known as “aftereffects”) 



 

even when perturbed sensory feedback is removed, and participants are instructed to forgo strategy use and 
reach directly toward the visual target. 
 
However, two key pieces of evidence highlight the prominence of error-based explicit strategies in these 
tasks. First, while participants can successfully adapt to large perturbations such as a visual rotation of 45°, 
the aftereffect is considerably smaller, consistent with the hypothesis that only a fraction of the learning 
was implicit (Figure 2B) (Taylor et al., 2014). Second, when asked to verbally report where they intended 
to aim before each movement, participants’ explicit reports clearly showed that a large portion of learning 
was driven by explicit strategies. Together, these findings elevate error-based motor learning from a process 
placed squarely in the domain of implicit memory to one that also relies on explicit declarative strategies.  
 
Explicit strategies also contribute to other error-based adaptation tasks, such as saccade adaptation (J. 
Huang et al., 2017), force-field adaptation (Schween et al., 2020), target-jump adaptation (Sadaphal et al., 
2022), prism adaptation (Leukel et al., 2015; Prablanc et al., 2020; Redding & Wallace, 2002) and 
locomotor adaptation (Ellmers et al., 2020; Malone & Bastian, 2010; Roemmich et al., 2016). Speech 
adaptation is one domain where an explicit component has yet to be found; indeed, characteristic of implicit 
learning, the degree of speech adaptation tends to be limited and incomplete, with changes in performance 
only amounting to ~50% of the total perturbation (K. S. Kim & Max, 2021; Lametti et al., 2020; Munhall 
et al., 2009; Parrell et al., 2021). 
 
One of the most compelling cases for strategy use is found in mirror-reversal learning (Ewert, 1930; 
Sekiyama et al., 2000; Stratton, 1897; Sugita, 1996; Telgen et al., 2014). Introspection when performing 
the task underscores both the significant cognitive demands required and the ready adoption of strategy use 
(e.g., “To go left, move right.”). More recently, efforts have been made to quantify the relative contribution 
of implicit and explicit components to mirror-reversal learning (Figure 2C) (Hadjiosif et al., 2020; Lillicrap 
et al., 2013; Wilterson & Taylor, 2021; Yang et al., 2021). Based on verbal reports about the intended 
aiming position, over 90% of the learning originates from an explicit strategy (Figure 2D). Additionally, 
the substantial time required for movement planning (Wilterson & Taylor, 2021), as well as learning 
impairments observed under dual-task conditions (Eversheim & Bock, 2001) all indicate that mirror 
reversal learning relies heavily on strategy use. 
 
Multiple learning processes also contribute to reinforcement-based motor learning, the process of 
refining movements through reward and/or punishment. In the initial work with this method, learning was 
thought to occur via implicit processes (Cashaback et al., 2019; Galea et al., 2015; Izawa & Shadmehr, 
2011; Nikooyan & Ahmed, 2015; Uehara et al., 2019; Wu et al., 2014). However, reinforcement-based 
motor learning engages both implicit and explicit processes: As illustrated in Figure 2E-F, participants can 
successfully adjust their movements based on binary reinforcement feedback signaling whether their 
movements hit or missed a hidden, and gradually shifting, reward zone (van Mastrigt et al., 2023). 
Strikingly, less than 50% of learning can be attributed to implicit processes, as indexed by the aftereffect 
phase when participants are instructed to forgo strategy use and reach directly toward the visual target. This 
result underscores the significant contribution of strategy use in reinforcement-based motor learning. 
 
Two additional pieces of evidence emphasize the presence of reinforcement-driven sensorimotor strategies. 
First, unlike error-based vectorial feedback (Block & Bastian, 2011; Ruttle et al., 2021; Tsay, Kim, et al., 
2021), binary reinforcement does not distort the participants’ sense of hand position, strengthening the 
claim that the sensorimotor map is not implicitly altered by reward and/or punishment (Izawa & Shadmehr, 
2011). Second, learning is severely compromised when the task is performed concurrently with a secondary 
task, indicating that reinforcement-based motor learning can be cognitively demanding (Codol et al., 2018; 
Holland et al., 2018). Together, these findings make a strong case for strategy use during reinforcement-
based motor learning.  
 



 

 



 

Figure 2. Multiple processes contribute to a wide range of sensorimotor learning tasks. A) Schematic of an error-based motor 
learning task. The 45° rotated cursor feedback (white dot) was provided throughout the movement. B) Mean time courses of hand 
angle (light blue line) during baseline veridical feedback (cycles 1 – 6), error-based feedback (cycles 7 – 47), and no-feedback 
aftereffect cycles (cycles 48 - 52). Red line denotes the time course of strategy use, measured by verbal reports of aiming location 
using a number wheel. Black line denotes the time course of implicit learning, estimated by subtracting verbal reports of aiming 
location from overall performance. Figure adapted from Taylor et al (2014). C) Schematic of a mirror-reversal task. The visual 
cursor feedback (white dot) was reflected over the vertical axis and provided throughout the movement. D) Mean time courses of 
hand angle (light blue line) during baseline veridical feedback (cycles 1 – 6), error-based feedback (cycles 7 – 125), and a no-
feedback aftereffect cycle (cycle 126). Red line denotes the time course of strategy use, measured by verbal reports of aiming 
location using a number wheel. Black line denotes the time course of implicit learning, estimated by subtracting verbal reports of 
aiming location from overall performance. Figure adapted from Wilterson & Taylor (2021). E) Schematic of a reinforcement-based 
motor learning task. Participants made center-out reaching movements from a grey starting circle to the blue target. A pleasant 
auditory “ding” was provided when the movement passed within the reward zone (green arc); otherwise, an unpleasant “buzz” was 
played. F) Gradually changing the reward zone (green zone) leads to learning (light blue line), as indicated by the change in hand 
angle. Hand angle is presented relative to the target (0°) during baseline veridical feedback trials (cycles 1-15), reinforcement 
feedback (cycles 16-75), and no-feedback aftereffect trials (cycles 76 - 80). Figure adapted from van Mastright et al (2023). G) 
Schematic of a use-dependent motor learning task. Participants reached a habitual target in 80% of the trials; in the remaining 20% 
of the trials, participants reached one of six probe targets located between 0° - 90° away from the default target. H) Participants 
exhibited a marked use-dependent bias towards the default target on probe trials (i.e., failure to re-aim away from the default target), 
with the size of this bias modulated by reaction time (medium split). Reaches with faster reaction times exhibited greater biases 
(black line), whereas reaches with slower reaction times exhibited smaller biases (light blue line). Grey lines denote reaches toward 
the default (horizontal line) and probe target location (diagonal line). *Implicit use-dependent biases, when statistically isolated, 
are less than 5° for all probe distances. Figure adapted from Tsay*, Kim*, et al (2022). Shaded error bars denote SEM.  
 
Multiple learning processes also play a role in use-dependent motor learning, the process of refining 
movements through repetition, independent of feedback (Classen et al., 1998; Mawase et al., 2017). For 
example, in reaching studies, use-dependent learning is evident as a bias towards a frequently performed 
movement direction (Diedrichsen et al., 2010; Verstynen & Sabes, 2011). This movement bias is believed 
to be implicit and rigid, meaning it cannot be flexibly overridden by explicit, declarative processes. 
However, recent findings have demonstrated that a large portion of use-dependent bias can be explicitly 
overridden (Marinovic et al., 2017; Reuter et al., 2019; Tsay, Kim, Saxena, et al., 2022) (but see: (Suleiman 
et al., 2023; Wong & Haith, 2017)): As illustrated in Figure 2G-H, the use-dependent bias towards a 
frequently repeated movement (i.e., default target location) is more pronounced for faster and more 
impulsive movements, while the bias is reduced for movements initiated slower and more cautiously. This 
finding highlights how explicitly re-aiming towards a different motor goal (i.e., the probe target location) 
can effectively override a default motor plan (i.e., the default target location).  
 
Beyond the sensorimotor learning tasks outlined above, consideration of multiple processes is also 
important for understanding motor sequence learning (see (Krakauer et al., 2019) for an in-depth review). 
The serial reaction time task has been widely deployed as a test of implicit learning. However, even the 
earliest studies using this task demonstrate that explicit learning can have a major effect on performance, 
impacting how participants represent the structure of the sequence (Cohen et al., 1990; Jiménez et al., 2006; 
Nissen & Bullemer, 1987). Moreover, even under conditions designed to minimize explicit learning, 
participants, including those with severe anterograde amnesia, develop explicit knowledge of sequence 
fragments. This explicit knowledge is, in fact, essential for performance improvements, accounting for 
much of the reduction in reaction time (Moisello et al., 2009; Reber & Squire, 1994, 1998). 
 
New psychophysical methods have proven useful in identifying properties of implicit and explicit learning 
processes across multiple dimensions (Table 1; also see (Huberdeau et al., 2015) focusing on a subset of 
these dimensions). Similar to how implicit and explicit processes have been dissociated in other domains 
(Batterink et al., 2015; Turk-Browne et al., 2005), implicit sensorimotor learning is minimally impacted by 
variations in cognitive demand such as the time available for planning (Haith et al., 2015; Leow et al., 
2017), whereas strategy use is very sensitive to cognitive load, a process negatively impacted when planning 
time is limited (Fernandez-Ruiz et al., 2011).  
 



 

More germane to the motor domain, implicit learning is sensitive to the timing of feedback, relying on a 
close temporal association between movement initiation and feedback presentation (Kitazawa et al., 1995; 
Schween & Hegele, 2017; Wang et al., 2022). Implicit learning also operates in an invariant manner in 
response to a wide range of perturbations (H. E. Kim et al., 2018; Marko et al., 2012; R. Morehead et al., 
2017; Tsay, Lee, et al., 2021; Wei & Körding, 2009) and is not modulated by the variability of the 
perturbation (Avraham et al., 2020; Wang & Ivry, 2023) (but see (Albert et al., 2021)). In contrast, strategy 
use remains robust even when the feedback is significantly delayed (Brudner et al., 2016; Tsay, Schuck, et 
al., 2022), scales with the size of the perturbation (Krista Bond & Taylor, 2015), and is attenuated when the 
perturbation is unpredictable (Hutter & Taylor, 2018).  
 
The two processes also differ in terms of savings and generalization. Implicit learning is attenuated upon 
re-learning, whereas explicit strategies show savings (Avraham et al., 2021; Haith et al., 2015; R. Morehead 
et al., 2015; Tsay et al., 2023). Implicit learning exhibits narrow generalization around the aiming location 
(Day et al., 2016; Krakauer et al., 2000; R. Morehead et al., 2017), minimal generalization across effectors 
(Poh et al., 2016), and is based in both extrinsic and intrinsic coordinate frames (Poh & Taylor, 2019). 
(Note: Extrinsic coordinate frames are linked to the physical world, while intrinsic coordinate frames are 
linked to the state of the body (Hudson & Landy, 2016; Sober & Sabes, 2005).) Strategy use results in broad 
generalization to different target locations (McDougle et al., 2017; McDougle & Taylor, 2019; Poh et al., 
2021), exhibits almost full generalization to other effectors (Bouchard & Cressman, 2021; Werner et al., 
2019), and is based primarily in extrinsic coordinate frames (Poh & Taylor, 2019).  
 
Strikingly, the effect of aging has opposite effects on these two processes: While implicit learning is either 
similar or enhanced in older adults compared to younger adults, strategy use is markedly impaired 
(Ruitenberg et al., 2023; Tsay et al., 2023; Vandevoorde & Orban de Xivry, 2019, 2020; Wolpe et al., 
2020). 
 

# Dimension Implicit Learning Explicit Strategy 
1 Declarative No Yes 
2 Volitional No Yes 
3 Planning time Short Long 
4 Computational goal Minimize sensory prediction error Minimize task error 
5 Feedback timing Sensitive Insensitive 
6 Perturbation size Saturates for large errors Scales with error size  
7 Perturbation variability Insensitive Sensitive 
8 Perturbation re-learning  Attenuation Enhancement  
9 Spatial generalization  Narrow Broad 
10 Effector generalization  No Yes 
11 Coordinate generalization Extrinsic and intrinsic Mostly extrinsic 
12 The effect of aging  Enhancement Attenuation 

 
Table 1. Implicit and explicit sensorimotor learning processes differ along many psychological, task, and demographic 
dimensions.  
 
  



 

II. The 3R Framework for Strategy Use: Reasoning, Refinement, and Retrieval 
 
The principles of implicit and explicit learning processes have been most convincingly established in simple 
sensorimotor learning tasks, those that require only minutes to learn (e.g., see examples in Section I). We 
expect that analogous principles will apply to the acquisition of complex motor skills – those that require 
hours, days, and even weeks to learn (Du et al., 2022; Haith et al., 2022; Listman et al., 2021; Nah et al., 
2020; Scholz et al., 2009). However, understanding complex sensorimotor strategies will be a considerable 
challenge, one that will likely require new computational principles and insights. 
 
Early computational models of sensorimotor learning were grounded in the assumption that motor learning 
operates as a unitary implicit process. One prominent model (i.e., single-rate state-space model) proposed 
that motor learning follows a gradual and iterative process that seeks to minimize sensory prediction error 
(Donchin et al., 2003; Shadmehr et al., 2010), the discrepancy between the predicted and actual feedback. 
However, this model fails to capture key behavioral features such as the rapid drop in performance during 
the aftereffect phase when participants are instructed to reach directly to the target (Figure 1).  
 
These failures led to revised models that recognized the behavior was comprised of multiple learning 
processes (Haruno et al., 2001; Herzfeld et al., 2014; V. S. Huang et al., 2011; H. E. Kim et al., 2020; Lee 
& Schweighofer, 2009; McDougle et al., 2015). Revised multi-rate state-space models have assumed either 
multiple sensory prediction error-driven mechanisms (Smith et al., 2006), multiple task error-driven 
mechanisms (Albert et al., 2022), or distinct error-based mechanisms, with one sensitive to sensory 
prediction error and the other sensitive to task error (Taylor & Ivry, 2011; Tsay, Haith, et al., 2022). 
Although these models often successfully capture the average group behavior (Figure 3A) (Cisneros et al., 
2023), they fail to account for idiosyncratic individual learning profiles that deviate from gradual error 
reduction (Taylor & Ivry, 2011). Specifically, a comprehensive account of strategy use would need to 
explain why individuals show punctuated jumps in behavior (Figure 3B; “moments of insight”), marked 
and varied exploratory patterns (Figure 3C), and systematic errors that are inconsistent with gradual error 
reduction (Townsend et al., 2023). Furthermore, a good model would need to explain why the sign of the 
error systematically flips in early learning (Figure 3D) (McDougle & Taylor, 2019) or why performance 
systematically worsens in response to certain perturbations (Hadjiosif et al., 2020; Kasuga et al., 2015; 
Telgen et al., 2014).  
 
 



 

 
Figure 3. Group and representative individual performance in an error-based learning task. A) Median time course of 
heading angle during baseline veridical feedback (trials 1 – 30), error-based perturbed feedback (trials 31 – 150), and no-feedback 
aftereffect trials (trials 151 – 165). During the perturbation phase, a 60° rotated endpoint cursor feedback (white dot) was provided.  
To isolate strategy use and abolish implicit adapation, visual feedback was provided 800 ms after movement termination. Indeed, 
motor aftereffects, a signature of implicit adaptation, was not evident in the participants’ data. Shaded error bars denote SEM. B - 
D) Representative individuals exhibiting B) moments of insight, C) varied early exploration, and D) systematic sign flips of ±60°. 
Figures adapted from Cisneros, et al (2023).  
 
To make progress toward a formal computational account of strategy use in complex real-life motor skills, 
it will be crucial to consider three general processes: Reasoning, Refinement, and Retrieval (“3R” 
framework). Reasoning involves understanding (often arbitrary) action-outcome relationships and using 
this knowledge to construct an effective controller (A. Collins & Koechlin, 2012; Donoso et al., 2014; 
Heald et al., 2021; Lillicrap et al., 2013; Todorov & Jordan, 2002; Yang et al., 2021). To illustrate this 
concept, consider learning to ride a bicycle. One of the initial steps for the novice is to understand the 
relationship between movements of the arm and movements of the bicycle. Once the novice identifies the 
correct action-outcome relationship, she can leverage this physical intuition to derive a crude control policy 
(e.g., (Allen et al., 2020)). 
 
Motor learning researchers can draw valuable insights from cognitive science, a field that has formalized 
computational models for reasoning. For example, one flavor of reasoning is “Inference over Hypotheses” 



 

(Griffiths et al., 2010; Piantadosi et al., 2016; Rule et al., 2020; Xia & Collins, 2021), which entails two 
main components: First, the hypothesis space encompasses domain-specific action primitives and relational 
primitives. Action primitives may entail movements such as “moving the right arm forward” or “moving 
the left arm backward,” while relational primitives may encompass operations like “or,” “and,” “before,” 
and “after.” By combining these primitives, more complex hypotheses can be created, such as “moving the 
right arm forward and the left arm backward will move the bike leftward.” Second, the merits of these 
hypotheses can be evaluated via inference, where learners use sensory feedback to strengthen or weaken 
their beliefs about each hypothesis.  
 
Reasoning as inference has a few advantages over classic models of motor learning. First, it can account 
for behaviors inconsistent with gradual error reduction. For example, marked exploratory behavior early in 
learning and punctuated jumps in behavior may signify the rapid modification and adoption of action-
outcome hypotheses; errors may show systematic sign flips when the novice mistakes the direction of a 
rotation as clockwise instead of counterclockwise; and errors may systematically increase when a novice 
pursues incorrect hypotheses, such as mistaking a mirror reflection for a rotation. Second, reasoning as 
inference goes beyond learning which affine transformation (e.g., rotation, translation, reflection, etc.) best 
explains the action-outcome relationship (e.g., (Baddeley et al., 2003; Burge et al., 2008; Wei & Körding, 
2010)). Specifically, cognitive hypotheses may be more abstract and qualitative in nature. As such, the 
hypothesis space can be more expansive, comprising a near-infinite combination of action-relational 
primitives; the process of learning can also be more elaborate, involving non-parametric and non-linear 
computations (e.g., particle filters and Gaussian processes) that might be necessary for mastering complex 
motor skills. (Heald et al., 2021; Therrien et al., 2016). 
 
We recognize that there are many ways to strategically reason: Inferential reasoning seeks to understand 
which set of primitives best explains the action-outcome relationship (e.g., “How should I best coordinate 
my arms to make a leftward turn?”), whereas abductive reasoning seeks to identify the most plausible cause 
(e.g., “Did moving my right arm forward and left arm backward cause the bike to turn left?”). Novices may 
also prefer computationally cheaper, heuristic ways of reasoning. For example, they may rely on working 
memory to develop a control policy that avoids recent unsuccessful actions and repeats successful actions 
(A. Collins, 2018; A. G. E. Collins et al., 2017; A. G. E. Collins & Frank, 2012). Future studies are needed 
not only to determine which type of reasoning provides a more suitable explanation for strategy use in 
different tasks but also to explore other reasoning processes that help break down a complex motor skill 
into more learnable subcomponents. 
 
Refinement entails learning the optimal movement parameters to achieve the motor goal. Building on the 
previous example, once our novice cyclist understands how manipulation of the handlebars controls the 
bike’s heading angle, she needs to refine this skill, learning the optimal timing and amplitude of the 
movements for different types of turns. This is a crucial phase where learners fine-tune their control policy 
to achieve movement goals in an accurate, precise, and efficient manner. The process of strategy use can 
be viewed as a process of utility maximization (Wolpert & Landy, 2012; Yoon et al., 2020), with the inputs 
to the utility function varying based on task requirements. Through utility maximization, the learner will 
progressively converge on the optimal movement parameters that enable her to expertly maintain a 
consistently smooth and stable bike ride.  
 
Contrary to classic models of motor learning, which often solely focus on maximizing sensorimotor utilities 
like accuracy (Kording & Wolpert, 2004), precision (Shmuelof et al., 2012), and energy conservation 
(Abram et al., 2022, 2019; Finley et al., 2013; Sánchez et al., 2017), a comprehensive model of strategy 
refinement will need to consider how both sensorimotor and domain-general utilities are jointly refined. 
Here, too, motor learning researchers can draw valuable insights from cognitive science, a field that has 
formalized models for how domain-general utilities contribute to learning. These domain-general utilities 
include intrinsic motivation (Kulkarni et al., 2016; Molinaro & Collins, 2023; Wulf & Lewthwaite, 2016), 



 

financial incentives (Lebreton et al., 2018), cognitive effort (Frömer et al., 2021; Koranda et al., 2022), 
sense of agency (Haggard, 2017; Parvin et al., 2018), sense of embodiment (Kieliba et al., 2021; Schone et 
al., 2023), informativeness (Barack et al., 2023), and social praise (Mueller & Dweck, 1998). 
 
Concretely, by parametrically manipulating different utility functions and providing participants with 
explicit movement goals (i.e., minimizing the need for strategic reasoning), we can observe how 
sensorimotor and cognitive utilities may dynamically trade-off during learning. For instance, during early 
learning, participants may move accurately but with significant cognitive effort, whereas in late learning, 
they may allow for more errors in exchange for reduced cognitive effort (K. Bond et al., 2021). Together, 
we envision that this approach will take us one step closer to understanding how humans learn complex 
motor skills, where numerous sensorimotor and cognitive control utility functions are optimized in a 
multivariate and interactive manner (Ritz et al., 2022).  
 
Retrieval entails recalling a control policy to efficiently achieve the motor goal. Once a cyclist has refined 
the strategy for maintaining a steady bike ride, the control policy becomes embedded in memory and, with 
appropriate contextual cues, can be retrieved in the future (Heald et al., 2021; Xia & Collins, 2021). For 
example, when our expert biker encounters a set of stairs, she can rapidly maneuver her bike to execute a 
flawless “Wheelie Drop” (i.e., a stunt trick where the biker lifts the front wheel off the ground while moving 
down the stairs). 
 
Cross-pollination between cognitive science and motor learning has fostered the development of several 
computational models of retrieval. These models formalize how learners use contextual information (e.g., 
sensory cues and bodily states) to retrieve the appropriate control policy for accomplishing a goal (Eckstein 
& Collins, 2020; Gershman et al., 2010; Heald et al., 2021, 2023; Xia & Collins, 2021). These models 
generally consist of three components: First, the learner possesses a memory of various contexts, with each 
context associated with a control policy. For example, when heading out a smooth well-paved trail, a 
mountain biker might adopt a narrow, aerodynamic position to increase speed, whereas to start down a 
rocky descent, the biker might shift to the back edge of the seat to adopt a more stable position. Second, the 
learner continuously makes contextual inferences from a stream of sensory cues. For example, if our biker 
starts feeling friction against her wheels, she might infer, with some uncertainty, that she is encountering a 
heavily forested section. If none of the contextual memories match the current context, the learner may 
create a new memory associated with a new control policy, one that can undergo further reasoning and 
refinement. Third, the learner makes an action based on an integrated control policy (e.g., a weighted 
average of context-specific control policies determined by their similarity to the current context).  
 
How is motor expertise – the ability to enact complex movements with efficiency, accuracy, and 
consistency (Du et al., 2022; Ericsson, 2014) – viewed through these three general components of retrieval? 
First, experts likely possess a wealth of contextual memories associated with a given motor task, each with 
a well-reasoned and well-refined control policy acquired through extensive practice and experience. 
Second, experts avoid creating entirely new memories and control policies, as this process is likely 
computationally demanding. Instead, they can efficiently and confidently match the current context with a 
specific one in memory. Third, experts need not tediously evaluate the merits of different control policies. 
Instead, they have forged strong associations between contexts and control policies, which enable them to 
easily and unambiguously enact a well-reasoned, refined, and successful action tailored to the current 
context. While future experiments are needed to directly contrast these retrieval processes between novices 
and experts, we foresee that these ideas will open exciting avenues to advance theories of skill acquisition 
and inform the design of training programs to enhance expertise. 
 
It is important to recognize that while strategic performance is volitional and explicit, the 3Rs of strategy 
use may function at different points along the implicit-explicit continuum. Even though we can verbalize 
and consciously control our movements during a use-dependent learning task, we may be unaware that the 



 

sensorimotor system has retrieved a highly practiced default response, especially when preparation time is 
limited. Similarly, while we can consciously aim away from the displayed target in visuomotor rotation and 
mirror reversal tasks, we may have difficulty explaining our strategy (Maresch et al., 2021) or identifying 
the utility functions we sought to maximize (McAllister et al., 2021). Thus, the 3R framework invites us to 
move beyond simple implicit-explicit dichotomies and consider how strategic changes in performance may 
emerge from learning mechanisms at different points along the implicit-explicit continuum (also see: 
(Hadjiosif & Krakauer, 2021; Maresch et al., 2020)).  
 
With this graded and more nuanced perspective, we revisit the intriguing phenomenon observed in the 
performance of H.M. when tested on a mirror drawing task over multiple sessions. Despite having no 
memory of having performed the task in prior sessions, H.M. showed excellent retention. Interestingly, this 
retention was effector-specific, meaning that left-hand performance only benefited from previous left-hand 
practice, and vice versa. On one hand, these data suggest that the benefits observed in H.M.'s performance 
were due to context-dependent strategic recall, where the context is defined by the movement effector. On 
the other hand, the improvements in H.M. may instead be attributed to improved strategy refinement. That 
is, within each session, H.M.’s use of a strategy becomes refined in an effector-specific manner and this 
benefit is retained across sessions. Future empirical studies are needed to evaluate this possibility, shedding 
light on the dynamic interplay between recall and refinement in learning motor skills. 
 
The 3R framework shares similarities with the classic skill acquisition framework proposed by Fitts and 
Posner (Fitts & Posner, 1979). The Fitts-Posner framework describes three stages of learning: The 
cognitive, associative, and automatic stages. In the cognitive stage, the novice grasps an understanding of 
the goals of the task and the general structure of the actions required to achieve that goal. In the associative 
stage, the novice experiments with different gestures, learning the different movement subcomponents that 
form the skilled action. Finally, the automatic stage captures how the skill becomes refined, with the expert 
moving in an effortless and near-reflexive manner.  
 
While the 3R and Fitts-Posner frameworks both acknowledge that the acquisition of motor skills involves 
a transition from being cognitively demanding to automatized, there are two notable differences. First,  the 
Fitts-Posner framework describes motor skill acquisition at a purely phenomenological level. In contrast, 
the 3R framework outlines specific computational mechanisms. For example, as a starting point, we 
outlined how reasoning relies on inference and/or heuristics, refinement is driven by utility maximization, 
and retrieval depends on contextual inference. We anticipate that this level of computational specificity will 
inspire more concrete experimental tests that can advance motor learning research.  
 
Second, the Fitts-Posner framework emphasizes a singular progression through the cognitive, associative, 
and automatic stages of learning, with a focus on how motor memories that are initially declarative becomes 
proceduralized with practice. In contrast, the 3R framework not only takes as a starting point that motor 
skills involve the operation of multiple learning processes, but its computational emphasis also facilitates 
easy integration with other learning processes. While reasoning, refinement, and retrieval constitute one 
route toward successful motor learning, these processes can be readily combined with other computational 
mechanisms, such as those for implicit learning (e.g., (Tsay, Kim, Haith, et al., 2022)). This feature is 
crucial, as it highlights the importance of characterizing learning processes with distinct dynamics and 
constraints (Table 1).  
 
III. Forging a Stronger Bond between Cognition and Action  
 
We have demonstrated the important, yet underappreciated role of explicit strategy use in sensorimotor 
learning. Consequently, there has been little progress in the development of models for explicit strategy. 
Here, we present a framework that postulates how successful strategy use relies on three general processes: 
Reasoning, Refinement, and Retrieval. As these ideas advance toward a formal computational account, we 



 

see opportunities for increased cross-pollination between motor learning and cognitive science 
communities. Undoubtedly, these intellectual bonds will be essential for developing a comprehensive 
theory of motor learning, capable of explaining the intricate cognitive-motor interactions that facilitate 
successful motor skill acquisition, adaptation, and retention. 
 
IV. Open questions 
 
1. How do reasoning, refinement, and retrieval differ across motor learning tasks? For example, how do 
action-outcome hypotheses and utility functions differ between skills that are part of our natural 
development (e.g., reaching, walking) and those that may be acquired at a later age (e.g., knitting, ballroom 
dancing)?  
 
2. Neuropsychological findings suggest that the prefrontal cortex and cerebellum may play a role in 
reasoning but not in refinement or retrieval (Butcher et al., 2017; McDougle et al., 2022; Taylor & Ivry, 
2014; Tsay, Schuck, et al., 2022; Wong et al., 2019). Are other brain areas involved in strategy retrieval but 
not reasoning? More generally, how are reasoning, refinement, and retrieval implemented in the brain?  
 
3. What are the behavioral and neural constraints underlying the transition between deliberate and automatic 
motor skills (Fresco et al., 2022; Servant et al., 2018)? Does automaticity reflect a reliance on retrieval-
based mechanisms or is there also a need to consider the role of strategy refinement?  
 
4. How can the 3R framework inform physical rehabilitation for patients with movement disorders? How 
do individual features such as age, physical fitness, and different cognitive abilities (Anderson et al., 2021; 
Anguera et al., 2010; Guo & Song, 2023; Tsay et al., 2023) impact reasoning, refinement, and retrieval? 
 
5. How are strategic reasoning, refinement, and retrieval impacted by changes in context (Avraham et al., 
2022; Dawidowicz et al., 2022; Forano et al., 2021; Heald et al., 2021)?   
 
6. Where are strategic reasoning, refinement, and retrieval positioned on the implicit/explicit continuum? 
How does the implicit-explicit nature of these processes change with sensorimotor experience? 
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