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McDougle SD, Bond KM, Taylor JA. Implications of plan-
based generalization in sensorimotor adaptation. J Neurophysiol
118: 383–393, 2017. First published April 12, 2017; doi:10.1152/
jn.00974.2016.—Generalization is a fundamental aspect of behav-
ior, allowing for the transfer of knowledge from one context to
another. The details of this transfer are thought to reveal how the
brain represents what it learns. Generalization has been a central
focus in studies of sensorimotor adaptation, and its pattern has
been well characterized: Learning of new dynamic and kinematic
transformations in one region of space tapers off in a Gaussian-like
fashion to neighboring untrained regions, echoing tuned population
codes in the brain. In contrast to common allusions to generaliza-
tion in cognitive science, generalization in visually guided reach-
ing is usually framed as a passive consequence of neural tuning
functions rather than a cognitive feature of learning. While previ-
ous research has presumed that maximum generalization occurs at
the instructed task goal or the actual movement direction, recent
work suggests that maximum generalization may occur at the
location of an explicitly accessible movement plan. Here we
provide further support for plan-based generalization, formalize
this theory in an updated model of adaptation, and test several
unexpected implications of the model. First, we employ a gener-
alization paradigm to parameterize the generalization function and
ascertain its maximum point. We then apply the derived general-
ization function to our model and successfully simulate and fit the
time course of implicit adaptation across three behavioral experi-
ments. We find that dynamics predicted by plan-based generalization
are borne out in the data, are contrary to what traditional models
predict, and lead to surprising implications for the behavioral, com-
putational, and neural characteristics of sensorimotor adaptation.

NEW & NOTEWORTHY The pattern of generalization is thought
to reveal how the motor system represents learned actions. Recent
work has made the intriguing suggestion that maximum generalization
in sensorimotor adaptation tasks occurs at the location of the learned
movement plan. Here we support this interpretation, develop a novel
model of motor adaptation that incorporates plan-based generaliza-
tion, and use the model to successfully predict surprising dynamics in
the time course of adaptation across several conditions.

adaptation; explicit learning; generalization; motor learning; move-
ment planning

THE GENERALIZATION of learning to novel situations plays a
central role in perceptual, semantic, motor, and statistical
learning and has been aptly termed the first law of psychology
(Shepard 1987). In the motor domain, purely “local” learning

would inevitably make the learner vulnerable to the curse of
dimensionality: One will never make the same movement
twice. Generalization in sensorimotor adaptation has been
specifically defined: When a subject adapts his/her movements
to counter a perturbation in a given movement direction,
adaptation generalizes to adjacent directions, following a
Gaussian-like function (Poggio and Bizzi 2004; Thoroughman
and Shadmehr 2000). However, despite decades of research,
questions remain concerning the reference frame for this rep-
resentation: For instance, is the generalization function
couched more in an extrinsic (e.g., world based, target based)
or intrinsic (e.g., body based, movement based) reference
frame?

One important question concerns the “center” of the gener-
alization function, which refers to the movement direction that
displays the maximum degree of adaptation after learning, with
the degree of adaptation falling off with adjacent movements.
In one study, Gonzalez Castro et al. (2011) showed that
generalization is not maximal around the visual target (i.e., the
task goal) as previously thought. Instead, a better model of
learning centers the generalization function on the actual
movements made—that is, the movement executed to counter
a perturbing force field. Generalization was most robust at
locations tied to the kinematic solution to the task rather than
an idealized straight-line path to the target (Gonzalez Castro et
al. 2011). These experiments serve as an elegant argument
against earlier models that posited target-based generalization.
However, in such tasks it has been assumed that the subject’s
plan was to always aim toward the target. Recent work, using
a method that dissociates explicit aiming processes from im-
plicit motor adaptation, has shown that subjects regularly do
not aim toward the target in perturbation tasks (Bond and
Taylor 2015; Day et al. 2016; McDougle et al. 2015, 2016;
Morehead et al. 2015; Taylor et al. 2014). Using this method,
a recent visuomotor rotation study (Day et al. 2016) has
provided a different account, showing that the strongest can-
didate for the center of generalization is the subject’s explicitly
reported plan: Generalization was not maximal at the location
of the learning target or at the location that was most frequently
traversed by the hand but rather at the location the subject most
frequently aimed at to achieve task success.

The two accounts (movement centered vs. plan/aim cen-
tered) are not necessarily mutually exclusive, and the tech-
niques employed to assay them were different (force fields vs.
rotations). However, plan-based generalization is also consis-
tent with recent findings concerning interference: Hirashima
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and Nozaki (2012) showed that when two different targets are
associated with force fields pushing in opposite directions,
subjects can succeed in the task by countering both perturba-
tions with the same straight-ahead reach, without showing
catastrophic interference. However, interference would be pre-
dicted by a purely movement-centered model of generalization,
as learning would be canceled out by the opposite signs of the
two force fields. This finding suggests that some signal, aside
from the movement itself, can train separate neural represen-
tations to learn about each force field independent of the
movement needed to counter those force fields. Furthermore,
the plan-based formulation of generalization may also account
for mixed results across different studies, since participants’
aiming behavior can be erratic within an individual, idiosyn-
cratic across individuals, and task and instruction specific
(Taylor et al. 2014).

To better understand the dynamics of adaptation, plan-based
generalization should be incorporated into the standard state-
space model of adaptation. To this end, we first conducted a
generalization experiment that parameterized an average gen-
eralization function, while also replicating the results of Day et
al. (2016). We then simulated the predicted implicit adaptation
curves of the plan-based model (and a traditional target-based
generalization model) across three different experimental con-
ditions. Finally, we tested those predictions, using three behav-
ioral experiments. Our results support plan-based generaliza-
tion and confirm one of its strange predictions—that abrupt
increases in the magnitude of a sensorimotor perturbation can
induce a decrease in observed adaptation, independent of the
sign of those errors. Our model also incorporates our recent
hypothesis concerning the nature of sensorimotor adaptation,
namely that implicit adaptation is homologous with the slow
process of the dual-component model of sensorimotor learning
(McDougle et al. 2015).

These results provide a plausible computational description
of the generalization, time course, and algorithmic features of
sensorimotor adaptation and have novel implications for the
neural processes and substrates involved. Plan-based general-
ization of implicit adaptation suggests a model of cooperation
between cortical regions involved in high-level movement
planning and subcortical regions involved in implicit adapta-
tion, where the former may determine generalization in the
latter.

METHODS

Participants. Sixty-eight right-handed subjects (age range 18–34
yr; 46 women, 22 men) were recruited from the research participation
pool maintained by the Department of Psychology at Princeton
University in exchange for course credit. Handedness was verified
with the Edinburgh Handedness Inventory (Oldfield 1971). Sixteen
subjects participated in the generalization experiment, although one
subject was excluded for failure to follow task instructions. All
analyses in the generalization experiment were conducted on the
remaining fifteen subjects. Fifty-two subjects participated in the re-
bound experiments (see Experimental procedures and analysis).
Twenty subjects participated in the first rebound experiment, with ten
subjects coming from a previously published data set (McDougle et al.
2015) and the remaining ten added to counterbalance rotation direc-
tions. Sixteen subjects participated in the second rebound experiment,
and sixteen participated in the third. Rotation signs were counterbal-
anced in all experiments to account for kinematic biases (Ghilardi et
al. 1995). All subjects participated in protocols reviewed and ap-

proved by the Princeton University Institutional Review Board and
provided written informed consent.

Task and apparatus. In all experiments, participants made center-
out, horizontal reaching movements to visually displayed targets
(7-mm radius) with a digitizing tablet (Intuous Pro; Wacom). Move-
ments were recorded with a digital pen, which subjects held in a
power grip and moved along the surface of the tablet. The task was
controlled by custom software written in Python (https://www.python.
org). Reach trajectories were sampled at 100 Hz. Stimuli were shown
on a 17-in. LCD computer monitor (Dell) horizontally mounted 25 cm
above the tablet. The monitor occluded the subject’s vision of his/her
hand. A small cursor (3.5-mm radius) provided feedback during each
reach.

At the start of each trial, subjects positioned the digital pen in a
central position with the aid of a visual ring that represented the
distance between the hand and the starting position. After this position
was maintained for 1 s, a green visual target appeared. After leaving
the start, the subject’s reach had to cross an invisible ring that
contained the target in �500 ms to avoid a “too slow” warning,
delivered aurally to the subject by the task software. If the center of
the cursor landed within the target, a pleasant “chime” was sounded;
otherwise a “buzz” sounded.

A verbal reporting method was used to ascertain subjects’ explicit
movement plan on every trial (Fig. 1A). The task instructions in all
reporting trials were similar to those of previous work (Bond and
Taylor 2015; Day et al. 2016; McDougle et al. 2015; Morehead et al.
2015; Taylor et al. 2014). The target on a given trial was surrounded
by a ring of 62 numbered visual landmarks spaced 5.625° apart (Fig.
1A). Subjects were instructed to verbally report, before each reach, the
landmark they planned to aim toward to make the cursor terminate
within the target. The experimenter manually recorded the reported
aiming directions, and we refer to these data as explicit learning. To
separate out various learning processes, we quantified implicit learn-
ing by subtracting the explicit component from the participant’s
movement heading angle on each trial. Thus for every trial we
measured 1) the actual movement made by the subject, 2) the subject’s
intended movement (“plan”), and 3) the difference between the two,
which is interpreted as implicit adaptation (Fig. 1A; Taylor et al.
2014). This method allowed us to analyze each learning process
independently.

Experimental procedures and analysis. The generalization experi-
ment (Fig. 1B) proceeded as follows: The first 96 trials involved
reaches to all 16 target locations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°,
135°, 157.5°, 180°, �157.5°, �135°, �112.5°, �90°, �67.5°, �45°,
and �22.5°), which were presented in pseudorandomized blocks of 16
trials. In the first 16 trials subjects received online feedback to get
accustomed to the reaching task, followed by 32 trials to get accus-
tomed to end-point feedback and then 48 trials in which subjects
received no feedback to measure reach biases at all 16 targets.
Veridical end-point feedback was restored for the next 16 trials,
directed at a single target location (0°; i.e., the target directly to the
right of the start point), and participants were instructed to verbally
report their aiming location on each trial before moving (baseline aim
report block) so they could get used to the reporting procedure. After
this baseline block, for 96 trials (rotation block) participants experi-
enced a 45° rotation (the rotation was �45° for the counterbalanced
group) while reaching to a single learning target location (0°); par-
ticipants were instructed to continue to report their aiming location on
each trial. The rotation block was designed to get subjects to fully
learn the perturbation at the single learning target and reach asymp-
tote. The following 180 trials constituted the generalization probe
block, which was designed to test for generalization to novel target
locations: On 50% of trials subjects reached to 1 of the 15 probe target
locations, while still reporting their aim but receiving no cursor
feedback. Feedback was withheld at the generalization targets to
restrict error-driven learning. On the other 50% of trials in the
generalization block subjects reached to the learning target and con-
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tinued to receive rotated end-point cursor feedback, to prevent decay
of adaptation at the learning target. Learning trials and generalization
trials were alternated to ensure a regular “top-up” of adaptation at the
learning target. Finally, the last 48 trials constituted the aftereffect
block, where participants were told to reach directly at each target,
stopped reporting any aims, and received no feedback. Targets were
pseudorandomly presented in three blocks of 16 trials. The aftereffect
block was designed to get a measure of the final level of implicit
adaptation at each probe location.

Generalization was modeled as a Gaussian function, with a specific
height and width (�). Each subject’s (n � 15) implicit generalization
function was determined by calculating the mean implicit learning at
each of the 16 locations during the probe trials. A Gaussian was fit to
the group data via bootstrapping, resampling our subject pool with
replacement 1,000 times, and its parameters (height and width �) were
optimized to provide the lowest root mean square error (rmse) be-
tween the fitted curve and the bootstrapped mean function. Fits were
optimized with the fmincon function in MATLAB.

The next three experiments (Fig. 1C) used a “rebound” paradigm,
which involves learning a first perturbation, briefly learning a second
perturbation, and then entering an “error-clamp” block where visual
errors are removed and latent states of learning can be observed
(Smith et al. 2006). This paradigm is useful for extracting the fast and
slow processes of the two-state state-space model: While the brief
second perturbation can be adequately learned, the error-clamp phase
shows a return to the state trained by the first perturbation, suggesting
that one learning process (fast) can quickly learn the second pertur-
bation while another learning process (slow) remains “stuck” in the
first perturbation state. In the three rebound experiments, the session
proceeded as follows (Fig. 1C): The first 100 trials were baseline trials
where online cursor feedback was veridical. On trials 101–300 (R1)
the cursor was rotated by 45° (the sign of this rotation was counter-
balanced across subjects, but all subsequent descriptions are for the
counterclockwise group). On trials 301–320 (R2) the rotation flipped
sign to �45° (first rebound condition), was increased to 135° (second
rebound condition), or was increased to 75° (third rebound condition).
In trials 321–420 (error clamp) a visual error clamp was placed on the
cursor, making it move straight to the target regardless of the subject’s
hand position orthogonal to the target, and subjects were told to aim
directly to the target. In all three rebound experiments, the target
appeared at 0° (i.e., to the right of the start point) on all trials.

Note that we chose to provide only end-point feedback in the
generalization experiment to preclude online feedback corrections,

since feedback corrections can alter the generalization function (Tay-
lor et al. 2013), and to minimize the mismatch between trials with and
without any visual feedback. In the subsequent rebound experiments,
we chose to provide online cursor feedback to increase the magnitude
of implicit learning (Taylor et al. 2014) and thus our ability to detect
spontaneous rebound in the error-clamp block.

Generalization model. The goal of our model was to add plan-
based generalization to the slow process of the dual-process state-
space model. We have hypothesized that the slow process represents
the time course of implicit adaptation (McDougle et al. 2015). We
thus used the model to make predictions about how adaptation
proceeds in various sensorimotor rebound paradigms. The rebound
paradigm was specifically chosen to test our model, since it is thought
to reveal the time course of multiple learning processes (Pekny et al.
2011; Smith et al. 2006).

The standard state-space model of adaptation is defined as follows:

et � xt � pt (1)

xt�1 � Axt � Bet (2)

where e is the error experienced at time t, defined as the difference
between the current motor state x and perturbation p. A is the retention
factor applied during the update of x, and B is the learning rate.

Smith et al. (2006) outlined a dual-process state-space model that
combines a fast component, denoted by an E in Eq. 3, and a slow
component, denoted by an I in Eq. 4, to yield the final output x (Eq.
5). This model assigns separate retention factors and learning rates to
each process, where AE � AI and BE � BI.

xt�1
E � AExt

E � BEet (3)

xt�1
I � AIxt

I � BIet (4)

xt � xt
E � xt

I (5)

Critically, the fast process learns quickly but is flexible, and the
slow process learns slowly but is robust. We have recently provided
evidence consistent with the idea that the fast and slow processes may
map onto, respectively, explicit and implicit components of learning
(McDougle et al. 2015, 2016; Taylor et al. 2014). This was made
possible by using a task paradigm that measures subjects’ explicit
motor plans (angular aim directions) on every trial (Fig. 1), allowing
implicit adaptation to be estimated by subtracting subjects’ explicit
aiming locations from their actual movement directions. The resulting
subtracted process lines up closely with measured aftereffects, con-
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Fig. 1. Tasks, explicit/implicit learning. A: participants performed a visuomotor rotation task, where a visual cursor was rotated relative to their reach direction.
Explicit plans (blue) were measured via verbal reports, reach movements (purple) were recorded heading angles, and implicit learning (red) is the subtraction
of the former from the latter. B: trial protocol for the generalization experiment. Text on left of colored blocks specifies what type of target (learning vs. probe)
was presented in the respective block. C: trial protocol for the 3 rebound experiments. Text on left of colored blocks specifies the rotation magnitude and sign
for that block (note that rotation signs were counterbalanced in each condition).
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sistent with the idea that the implicit subtraction measurement repre-
sents true adaptation (Bond and Taylor 2015; Taylor et al. 2014). We
found that these two dissociated components can be accurately sim-
ulated and fit by the dual-process model (McDougle et al. 2015),
further suggesting that the pair of processes (fast/explicit and slow/
implicit) are homologous.

Because learning is not perfectly local, it is critical that general-
ization be incorporated into a complete model of the motor adaptation
process. Generalization of adaptation can be explained by a popula-
tion code, where neurons with distinct tuning functions are sensitive
to a range of movement directions (Donchin et al. 2003; Tanaka et al.
2009; Taylor et al. 2013; Thoroughman and Taylor 2005). When
learning occurs at one location, it spreads over to adjacent locations.
Thus adaptation should be represented as a vector of states corre-
sponding to multiple locations rather than a single location. General-
ization was incorporated into the model as follows: The state of
implicit adaptation, xI, was modeled as a 1 � 360 vector x�I, corre-
sponding to a tiled space of independent adaptation states at each
integer angular location along the circumference of the two-dimen-
sional circular workspace. Surrounding states are updated via a
Gaussian function, where the visited state on trial t was set as the
center, �t, of the Gaussian with standard deviation � and height BI, the
latter being equivalent to the learning rate of the slow process:

x�t�1
I � AIx�t

I � BI exp��x�I � �t�2 ⁄ 2�2� � et (6)

The value used to determine the center of the Gaussian on each trial
(�t) constitutes the frame of reference for generalization, for instance,
the target location, or movement plan, on trial t. In the traditional
target-based conception of generalization, the center of generalization
on every trial (�t) is the target location; in our updated plan-based
model, the center of generalization is the current aiming direction
(Day et al. 2016). Thus the predicted motor output on trial t (xt) is the
sum of the current explicit state (xt

E) and the implicit state (xt
I)

associated with the current model’s “center” of generalization, be it
the target (0° state) or the plan (xt

E state, which models the current
aiming direction). We used this updated model to simulate and fit the
time course of adaptation in three different “rebound” paradigms,
which are designed to help isolate the fast and slow components of
learning.

Model fitting. In the three rebound experiments, models were fit to
minimize the combined rmse between the model’s slow-state simu-

lation (xI) and the subject’s implicit learning data and the model’s
fast-state simulation (xE) and the subject’s explicit learning data
(McDougle et al. 2015). Fits were optimized with the fmincon func-
tion in MATLAB. The stability of the model fits was tested with a grid
search over different starting parameter values. We found that the
model fits were consistently stable within our constraints.

RESULTS

Width of generalization. We first set out to 1) experimentally
determine the width of an average generalization function,
isolating the generalization of implicit adaptation specifically,
and 2) replicate the finding that the movement plan—not the
target location or actual movement (kinematic solution)—is the
center of generalization (Day et al. 2016). To do this we had
subjects learn a 45° perturbation at a single 0° target location
and probed their implicit learning state at 15 other locations,
both during and after learning (Fig. 2A; see METHODS for
details).

Subjects displayed the typical Gaussian generalization pat-
tern: Implicit learning at the probe locations tapered off as a
function of distance from the original learning location (Fig.
2B). While it is not surprising that maximum adaptation is seen
at the learning target, because only those trials had cursor
feedback, the pattern shown in Fig. 2B does not specify what
aspect of behavior drives maximal implicit adaptation. The
maximum adaptation observed at the learning target can reflect
at least one of three variables: the learning target’s location
(target-based generalization), the movement made during
learning trials (movement-based generalization), or the explicit
plan during learning trials (plan-based generalization). Thus in
Fig. 2B the x-axis is conflated with both subjects’ movement
and aiming directions during learning trials. This conflation is
addressed in Center of generalization.

Figure 2B depicts the full generalization function of sub-
jects’ movements (purple) and the individual generalization
components for explicit (blue) and implicit (red) learning. As
previously shown (Heuer and Hegele 2011), explicit general-

Fig. 2. Parameterizing the generalization function. A: experimental setup. During the learning block (trials 97–208), subjects were only presented with the
learning target (0° target, green) and received rotated feedback, During the probe block, 50% of trials were rotated feedback trials at the 0° target, and 50% of
trials were no-feedback trials at the probe locations (black). B: generalization functions are shown for subjects’ hand angles (purple), aim reports (blue), and
implicit learning (red). y-Axis represents the angular value of each learning component, at each target location, after being rotated to a common 0° axis for
analysis. C: a Gaussian was fit to the bootstrapped mean implicit learning function. Inset: the mean width parameter of the fit Gaussian function, with 95%
confidence interval. Shading represents 1 SE.
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ization was essentially flat across the workspace. Such a
pattern could reflect true global generalization, a function of
the landmarks and instructions in the task, or a combination of
both; critically, our goal in designing the task was to induce
global (flat) explicit generalization in order to unmask the
“true” implicit generalization function (i.e., if aim directions
were highly variable across probe trials, it would yield a highly
distorted implicit generalization function). We note that the
generalization of explicit learning in an unconstrained experi-
mental setting may not be truly “flat” but would rather have its
own nonuniform, perhaps also Gaussian, function. But for the
purposes of the present study, we sought to isolate generaliza-
tion of implicit learning by constraining explicit generalization.
Future experiments will need to be conducted to better under-
stand how these two processes fully interact.

Interestingly, global explicit learning causes an effective
positive DC shift in the measured generalization function of
movements (Fig. 2B, purple). This DC shift is routinely ob-
served in visuomotor generalization data (Krakauer et al. 2000;
Taylor et al. 2013), and our results make the novel suggestion
that such a shift may be a result of the additive generalization
of explicit and implicit learning.

We determined the width of implicit generalization with a
Gaussian function, via bootstrapping (see METHODS); the aver-
age width, �, was 37.76° (Fig. 2C). This width value was used
for all subsequent model simulations and fits. We note that the
derived value of � is, qualitatively, in accordance with the
width of previously described generalization functions
(Krakauer et al. 2000; Mattar and Ostry 2007; Taylor et al.
2013).

Center of generalization. Our next analysis used the after-
effect block to determine the center of generalization. In the
aftereffect block, subjects were told to aim directly to pre-
sented targets and all cursor feedback was removed, giving us
a measure of implicit learning at each exact target location
without the confound of an explicit plan to a location away

from the target. If generalization is “target based,” the maximal
aftereffects should be seen at the 0° target, which was the only
target where subjects received feedback during the task. If
generalization is “movement based” (Gonzalez Castro et al.
2011), the peak aftereffect should be seen around the 45°
target, as the mean movement direction during learning block
trials (0° target trials) was ~43° (� movement � 42.80 �
0.50°). Finally, if generalization is plan based, the peak after-
effect should be closest to the 22.5° target, as the mean aiming
direction toward the learning target was 26.19 � 3.50°.

The generalization function during the aftereffect block is
shown in Fig. 3A. This function was created by taking subjects’
mean reach direction to each target in the no-feedback after-
effect block and subtracting their mean reach direction to each
target in the no-feedback baseline bias block. As predicted by
plan-based generalization (Day et al. 2016), peak aftereffects
were present near the 22.5° target. This result is especially
compelling considering that no feedback was ever received
during the rotation block at the 22.5° target trials, whereas at
the 0° target location rotated feedback was consistently present
through both the learning and probe blocks.

Importantly, since each subject had a unique mean aim
direction during learning trials, we could perform a more
quantitative analysis: First, a Gaussian was fit to each subject’s
distribution of aftereffects, with free parameters for the height,
offset, standard deviation, and mean value. The fitted mean
value (i.e., the “center of generalization,” or the x-coordinate
corresponding to the peak/mean of the fitted Gaussian) was
labeled as that subject’s peak aftereffect. This fitting procedure
allowed us to get smooth values that were not constrained to 1
of the 16 target locations. Second, subjects’ mean aim direction
was calculated as their mean aim during all learning target
trials (0° target) in both the learning and probe blocks of the
generalization experiment, and subjects’ mean movement di-
rection was calculated as their mean hand angle during all
learning target trials in the learning and probe blocks. Finally,

Fig. 3. Determining the center of the generalization function. A: generalization of aftereffects. Vertical lines show the predicted center of generalization for
target-based generalization (red), plan-based generalization (green), and movement-based generalization (blue). The horizontal width of the green and blue lines
represents �1 SE of, respectively, the mean aim direction and hand angle during learning trials. B: difference score analysis. Gaussian functions were fit to each
subject’s distribution of aftereffects to determine the peak of generalization for each subject. Difference scores were computed by subtracting the learning target
location (0°), the subject’s mean aim/plan, or the subject’s mean movement values during learning trials from their peak generalization value. Error bars represent
1 SE. *P � 0.017, Bonferroni-corrected � value. n.s., Not significant.
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we computed three separate “difference scores” for each sub-
ject, corresponding to three potential centers of generalization:
We calculated the difference between the location of their peak
aftereffects and 1) the learning target direction of 0°, 2) their
mean aiming direction during 0° target trials, and 3) their mean
movement direction during 0° target trials.

We performed three one-sample t-tests on the difference
scores (Bonferroni corrected) and, as predicted, found no
significant difference between the location of subjects’ peak
generalization and their mean aiming directions [t(14) � 0.94,
P � 0.35] but found significant values for both the target
location [t(14) � 4.35, P � 0.0006] and mean movement direc-
tion [t(14) � �3.31, P � 0.005; Fig. 3B]. These results support
previous findings showing that the movement plan may deter-
mine the locus of generalization (Day et al. 2016). Further-
more, our results show that individual differences in general-
ization may be partly explained by subject-specific aiming
behavior during a visuomotor learning task.

Predicting time course of adaptation. Plan-based general-
ization makes the important prediction that the direction in
which a subject is planning to move selects the internal
representation that is to be maximally adapted during learning.
This representation can be thought of as a neural population
code that corresponds to a certain desired movement direction.
These internal representations can be modeled as specific
“states” that selectively undergo adaptation, and, in turn, these
states can be recast as specific trajectories/directions in the
space of the task (i.e., 1°:360°).

Because the direction of a subject’s plan can change trial by
trial, the implicit adaptation time course that an experimenter
observes may consist of multiple assays of different internal
representations/states rather than the progress of a single dis-
tinct state. This can be thought of as a “credit assignment
problem” (Gonzalez-Castro et al. 2011): Credit for an observed
error can be differentially assigned to whichever representation
corresponds to the current movement plan.

Based on these assumptions, the plan-based model makes
several predictions about how adaptation should proceed in
various single-target “rebound” paradigms. Rebound para-
digms have been used to expose latent states of learning: In a
rebound paradigm, subjects first learn to counter a particular
perturbation, then a second perturbation is briefly presented,
and finally adaptation is measured in an error clamp. In most
cases, subjects learn the second perturbation easily but “re-
bound” in the error clamp, reaching in a manner that suggests
they are still adapted to counter the first perturbation. Such
results provide evidence that multiple learning processes exist:
a fast process that drives learning of the second perturbation
and a slow process that remains adapted to the first perturbation
during the error clamp (Smith et al. 2006).

First, the plan-based model predicts that if the perturbation
change induces a large change in the enacted plan, the implicit
time course should drop to near zero, because a new set of
states are now being updated that were only minimally updated
during the first perturbation. Second, this drop in observed
implicit learning should be generally agnostic to the sign of the
perturbation—the main factor is the absolute change in the aim
plan. This leads to the novel prediction that an increase in a
perturbation, which is followed by a corresponding increase in
visuomotor error, can induce a decrease in the degree of
observed adaptation. Such a result is not predicted by tradi-

tional models of learning. Finally, if the perturbation change
induces only a modest aim change, the drop in the degree of
observed adaptation should be partial, because states close to
the original aim direction may have also been significantly
updated during learning.

We simulated the three experimental paradigms with our
dual-process plan-based generalization model (Fig. 4). We
used the width parameter � derived from the first experiment
(Fig. 2C) and hand-tuned the retention and learning rate pa-
rameters using values similar to those previously reported
(McDougle et al. 2015), using the same values across all three
conditions. As shown in Fig. 4A, in the first rebound condition
(45°/�45° rotations) the model predicts a drop in implicit
learning during the counterrotation: The center of the general-
ization function (the aim/plan) moves ~60° during the second
rotation, and thus the newly observed implicit state shows little
learning (Fig. 4A). Importantly, target-based generalization
(dashed line in Fig. 4A) predicts a smaller drop in implicit
learning during the second rotation phase, since a target-based
model assumes the same state is being updated and observed in
all three phases of the experiment. The plan-based model also
predicts that the magnitude of adaptation unmasked in the
rebound phase lies between the asymptotic value during the
first rotation and the near-zero value during the second rota-
tion. This reflects an important prediction of the generalization
model: The aiming direction during the error-clamp phase is 0°
(subjects are instructed to aim directly for the target), which is
less than a standard deviation (in terms of the generalization
function) from the mean plan direction in the first rotation
block (~22.5°), resulting in significant learning at the 0° state.
Thus what appears to be adaptation “rebound” is the observa-
tion of a previously adapted state that was “hidden” because
the subject had not aimed to the target during the rotation
phases.

Another implication of our model is that the sign of the error
is relatively irrelevant when considering the magnitude of the
observed “drop” in implicit learning when the rotation magni-
tude changes—rather, this drop is primarily driven by the raw
distance between the two perturbations (�90°). Thus we pre-
dicted that when the perturbation was increased by 90° but
maintained its sign, the drop in the implicit learning trace
would look like that of the sign change condition. In our
second rebound condition, the first rotation presented was 45°
and the second rotation was 135°. We simulated this paradigm
using the same parameter values as the previous simulation. As
shown in Fig. 4B, the model again predicts a large drop to
around 0° of implicit learning at the onset of the second
perturbation. Subsequently, the implicit state starts to posi-
tively learn again because the new perturbation has a positive
sign. Finally, the model predicts more rebound in the error-
clamp phase than the first rebound condition (Fig. 4A), as no
negative learning occurs at the 0° state (Fig. 4B).

As shown in Fig. 4, A and B, our model predicts that a large
change in the magnitude of a perturbation can vastly alter the
observed adaptation. This occurs because a large perturbation
change can drive a large change in the movement plan and, as
shown in Fig. 3, adaptation is at the mercy of the movement
plan. It follows that if a change in the perturbation is modest
and lies within the generalization curve, the shift in the state of
observed adaptation should be smaller. In our third rebound
schedule, we changed the perturbation during the second rota-
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tion phase by only 30°, which is less than a single standard
deviation of the derived generalization function (Fig. 2C). We
simulated the experimental paradigm again using the same
parameter values as the previous simulations (Fig. 4C). The
model reveals an implicit learning trace that dips briefly during
the second rotation block and then shows robust rebound in the
error-clamp phase. Heat maps in Fig. 4, D–F, illustrate the
simulated degree of learning at each of the 360 states during
the task, showing how learning is generalized across states and
how changes in the plan alter the locus of maximum adaptation
in the map.

We conducted three behavioral experiments with the pertur-
bation schedules highlighted above, using the aim-report
method described in the generalization experiment (Fig. 1). We
found that the simulated slow/implicit processes of our model
(Fig. 4) predicted much of the dynamics of the measured
implicit learning time course in the behavioral data (Fig. 5).
For the first rebound condition, implicit adaptation dropped in
the second rotation phase and rebounded to an intermediate
value in the error-clamp phase (Fig. 5A). In the second rebound
condition, a similar drop was observed, and rebound was
higher than that of the first experiment, as predicted by the

model (Fig. 5B). We note, however, that subjects did not
positively adapt during the 135° rotation even though the
model predicted positive learning in that phase (Fig. 5B, inset);
this result may be explained in the context of recent work
showing that subjects do not seem to adapt well to especially
large rotations (Morehead et al. 2017). Finally, in the third
rebound paradigm, as predicted, subjects showed only a slight
dip in observed adaptation during the second rotation phase
and showed rebound in the clamp phase (Fig. 5C).

We fit our generalization model to the data (Fig. 5) by fitting
the slow process to the implicit time course and the fast process
to the explicit time course (McDougle et al. 2015) and using
the actual aiming data and movement data to determine the
center of generalization on each trial for the plan- and move-
ment-based models, respectively (see METHODS). All three mod-
els provided a strong fit to the data, and the fitted slow
processes resembled the slow processes of the simulations.
After collapsing the data across the three experiments, we
conducted two model comparison procedures: First, we used
the rmse of the fit between the slow process and the implicit
data to compare the plan-based generalization model (Fig. 5) to
both a target-based generalization model, which used only the

Fig. 4. Simulating adaptation with plan-based generalization. A: rebound condition 1, model simulation. The plan-based model predicts an implicit adaptation
time course (red) that drops quickly at the onset of the second rotation and shows an intermediate value of rebound. A target-based model predicts an
implicit time course (dotted line) that shows a weaker drop and no rebound. Insets: zoomed-in implicit simulation data from the end of the first rotation (trials
290–300), through the counterrotation (301–320), and the beginning of the clamp (321–330). B: rebound condition 2. This schedule is identical to condition 1,
except that the second rotation is 135°. The plan-based model predicts an implicit adaptation time course (red) that also drops quickly at the onset of the second
rotation (like condition 1), then regains ground, and finally shows robust rebound. Critically, a target-based model predicts an implicit time course (dotted line,
inset) that shows an increase instead of a drop upon the second rotation. C: rebound condition 3. This schedule is identical to condition 1, except that the second
rotation is 75°. The plan-based model predicts an implicit adaptation time course (red) that drops only subtly at the onset of the second rotation but shows robust
rebound. Importantly, a target-based model predicts an implicit time course (dotted line, inset) that shows a slight increase instead of a drop upon the second
rotation. Both models make similar predictions due to the more modest change in the aim direction (blue). D–F: heat maps showing learning at each of the 360
states during the 3 conditions with plan-based generalization. Hotter colors denote positive adaptation at those states. Black lines show the state being
observed/maximally updated during a given trial (in our model, this is the fast process).
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target location (0°) as the center of generalization for all trials,
and a movement-based generalization model, which used the
subject’s movements on each trial as the center of generaliza-
tion. We note that because the three experiments had only a
single target location, the fit of the target-based model is
mathematically equivalent to the fit of a model with no gen-
eralization. A repeated-measures ANOVA revealed a main
effect of model on rmse [F(2,51) � 28.00, P � 0.0001]. Post
hoc tests (Tukey’s HSD) revealed significantly better fits for
the plan- vs. target-based models (P � 0.05) and the move-
ment- vs. target-based models (P � 0.05) but no difference
between the plan- vs. movement-based models (P � 0.72). In
a second analysis, we fit each model to the averaged group data
from each experiment and calculated the quality of fit using the
Bayesian information criterion (BIC; Berniker et al. 2014). A
difference in BIC units of �10 is considered strong support for
the model with the lower value. BIC values were summed
across experiments and compared across models. Both the
plan- and movement-based models outperformed the target-
based model (BIC differences � 500), and the plan-based
model also outperformed the movement-based model (BIC
difference � 57.35).

We note that our behavioral results show an incongruity in
the decay of aftereffects in the error-clamp phase across the
three rebound conditions, where decay in the error-clamp
phase was virtually null in the first rebound experiment (Fig.
5A) but was clearly observed in the other two (Fig. 5, B and C).
The model does indeed predict greater rebound in the second
two conditions, because in those experiments the second rota-
tion is the same sign as the first and thus does not cause any
“unlearning” at any locations. Indeed, an ANOVA revealed a
trend in the main effect of condition on early error-clamp trials
(first 5 trials) in the error-clamp phases (P � 0.07), with
rebound conditions 2 (� � 16.07°) and 3 (� � 16.48°) both
showing larger early rebound than condition 1 (� � 10.13°).
Late error clamp (last 5 trials), however, was similar across
conditions (P � 0.59). Recent research has shown that if
error-clamp blocks are conducted up to 24 h after learning,
subjects will persistently show some stable degree of afteref-
fect (Brennan and Smith 2015a). Thus it may be the case that
in the second and third rebound conditions subjects are decay-

ing back to some stable value of adaptation, whereas in the first
condition the entire error-clamp block represents only that
stable value and thus does not decay. However, this interpre-
tation is conjecture, as the effects were not statistically reliable
and the present study was not specifically designed to provide
any systematic assay of decay rate or decay onset (Brennan and
Smith 2015b; Vaswani and Shadmehr 2013). Observed decay
could occur through the forgetting parameter in the model (AI):
Forgetting could simply represent imperfect retention of the
adapted movement in the recalibration circuit or the action of
a consistent proprioceptive error signal that gradually drives
the movement back to some prespecified prior concerning the
proprioceptive state and the observed visual feedback. Further-
more, given that our error-clamp phase includes an instruction
to the subject to aim directly for the target, it is possible that
some subjects ignored or only partially followed this instruc-
tion, leading to variance in error-clamp decay. Indeed, inter-
subject variance in a constant 0-error clamp has been reported
previously (Vaswani and Shadmehr 2013), and it is possible
that this variance is driven by directed exploration. Future
research can be designed to address these issues directly.

DISCUSSION

Generalization is a fundamental aspect of learning, allowing
behaviors to be flexible and robust considering the ever-
changing conditions of the body and environment. Generaliza-
tion has been shown to be central to human sensorimotor
learning, but the precise reference frame for generalization has
proven elusive. Recent research (Day et al. 2016; Gonzalez
Castro et al. 2011; Krakauer et al. 2006; Novick and Vaadia
2011) has argued against previous models of generalization,
which centered the putative generalization function on the
task-oriented goal of a movement—that is, the point in space
where task success is focused (e.g., a target to be contacted by
a cursor). Here we support the theory that centers the reference
frame of generalization on the explicitly accessible movement
plan (Fig. 3; Day et al. 2016) and formalize a model of
generalization that predicts counterintuitive time courses of
implicit adaptation in contexts where the movement plan re-
quired for task success changes by various signs and magni-
tudes (Figs. 4 and 5).

Fig. 5. Behavior. A: data and plan-based model fit for rebound condition 1. B: data and model fit for rebound condition 2. C: data and model fit for rebound
condition 3. Insets: zoomed-in implicit learning data from the end of the first rotation (trials 290–300), through the counterrotation (301–320), and the beginning
of the clamp (321–330). Shading represents 1 SE.
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The present study not only supports and formalizes plan-
based generalization but also shows that generic state-space
models of sensorimotor learning, which predict increases in
adaptation when the size of a motor error increases during a
perturbation task (Fig. 4, B and C), are flawed—if the move-
ment plan is required to deviate to account for large increases
in error, the plan-based model makes the correct, though
surprising, prediction that measured adaptation will appear to
decrease, as an uncharted state is now being updated and
observed. Indeed, it may be the case that once implicit learning
appears to be asymptotic a significant increase in its value
could not be reliably induced. First, in all subjects, a change in
the rotation caused a subsequent change in the aiming direc-
tion, thus shifting the implicit state being observed to a location
that has adapted less. It is likely that only very small changes
in the rotation size would prevent the explicit component from
shifting, and in such cases implicit learning would remain
virtually unchanged. Second, two recent studies have revealed
that implicit learning appears to saturate after many trials,
suggesting that there may be a ceiling on the level of adaptation
independent of questions of generalization (Bond and Taylor
2015; Morehead et al. 2017).

Indeed, Gonzalez Castro et al. (2011) made a similar
prediction that the apparent decreased learning rate ob-
served after large vs. small errors (Wei and Körding 2009)
could be the result of a “credit assignment” problem: Be-
cause the new movement required to counteract a novel
large error is distal to the previously learned movement, the
observed reduction in adaptation could be the result of
movement-based generalization rather than a reflection of
error-size-dependent learning rates in the CNS. Our results
support the credit assignment interpretation. Indeed, as
shown in Figs. 4 and 5, when the required aim/movement is
distal to the previously trained aim/movement, decreases in
adaptation are predicted by the width parameter of the
generalization function, rather than requiring a reformula-
tion of the learning rate. However, recent results (Day et al.
2016) and the generalization experiment described here
(Figs. 2 and 3) support the plan as the center of generaliza-
tion, not the movement itself. Two more pieces of evidence
support the plan-based framework: First, previous work has
shown that distinct internal models of opposing sensorimo-
tor transformations (rotations) and dynamics (force fields)
can be maintained for identical movement kinematics when
separate targets are presented for each transformation
(Hayashi et al. 2016; Hirashima and Nozaki 2012). Second,
a recent study found that interference can be reduced be-
tween two opposing force fields applied to the same reach
direction when different “follow-throughs” are cued
(Sheahan et al. 2016). What’s more, participants do not have
to carry out the follow-through but simply must plan it to
avoid interference (Sheahan et al. 2016). We argue that the
explicit aim, or end goal of the movement plan, provides the
context for which states are updated during adaptation. This
“context” may act as the “contextual signal” posited in
models of sensorimotor learning, such as the MOSAIC
model (Haruno et al. 2001).

Distinct learning processes and intrinsic vs. extrinsic coor-
dinate systems. The pattern of generalization is thought to
provide a window into the computational underpinnings of the
motor system (Poggio and Bizzi 2004). However, studies of

generalization have failed to paint a consistent picture of the
reference frame of generalization. Numerous studies have
found evidence for an intrinsic (joint based) reference frame
(Shadmehr and Mussa-Ivaldi 1994), while others provide evi-
dence for an extrinsic (workspace based) reference frame
(Krakauer et al. 2000). More recent work has suggested that the
CNS uses both intrinsic (e.g., joint configurations) and extrin-
sic (e.g., Cartesian points in space) coordinate frames during
adaptation (Berniker et al. 2014; Brayanov et al. 2012). This
work suggests that the brain learns both the intrinsic motor
dynamics needed to reduce sensorimotor error as well as
modifying a plan for a reach trajectory in extrinsic space. Thus
the CNS may build a composite representation of both internal
models. While the present study does not address the question
of intrinsic vs. extrinsic coordinate frames during adaptation,
some parallels may exist.

One hypothesis is that aiming may reflect explicitly acces-
sible trajectory planning and thus may be related to an extrinsic
coordinate frame of learning. Implicit adaptation may be more
reliant on an intrinsic reference frame or some combination of
the two. Because the generalization of adaptation in visuomo-
tor rotation tasks seems to be closely linked to the locus of the
plan (Fig. 3; Day et al. 2016), our data may provide indirect
support for the notion of mixed coordinate frames in visuomo-
tor rotation learning (Brayanov et al. 2012) because adaptation
appears to be reliant on the plan. One way to disentangle these
two coordinate frames would be to systematically shift the
workspace and joint configurations while tightly controlling
the locus of aiming.

Explicit learning and generalization in a psychological
space. These results also raise questions regarding the pat-
tern of explicit generalization, which has yet to be system-
atically addressed. Various lines of research have suggested
that explicit learning is likely to produce relatively global
generalization. First, Bond and Taylor (2015) showed that
explicit learning is highly flexible and can respond to
varying rotation sizes, number of targets, and, most impor-
tantly, whether the aiming landmarks are fixed or rotated
with the target. The latter result suggests that subjects have
a more abstract representation of the aiming solution rather
than just declaratively remembering the appropriate aiming
landmark. Heuer and Hegele (2011) showed that subjects’
aftereffects, a hallmark of implicit adaptation, generalize
locally but their explicit estimation of the movement re-
quired to counteract the perturbation generalizes globally.
Moreover, other recent research (Yin et al. 2016) has sug-
gested that the direction-specific, limited generalization ob-
served in adaptation tasks can be eliminated by the priming
of a model-free, explicit learning process. Yin et al. (2016)
showed that in a rotation task generalization to nonlearned
locations can be maximized if subjects perform an irrelevant
gain-adaptation task at those locations before a generaliza-
tion testing phase. One interpretation could be that this
additional training acts as a prime on a more explicit
learning system.

Another form of generalization, interlimb transfer, has been
shown to occur across limbs during the learning of visuomotor
rotations (Sainburg and Wang 2002), and it has recently been
shown that explicit learning is fully transferred between limbs
while implicit learning is only minimally transferred (Poh et al.
2016). The latter result suggests that a relatively abstract,
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high-level learning process primarily drives effective interlimb
transfer.

Critically, our generalization task (Figs. 2 and 3) was de-
signed to encourage subjects to use the same explicit aiming
solution (aiming number) at all locations to isolate a smooth
implicit generalization function. It is unclear whether the flat
global generalization function of explicit aiming depicted in
Fig. 2C is solely a result of the task instructions or a true sign
of explicit generalization, like that observed in Heuer and
Hegele (2011). It has been shown that contextual cues about
the movements of specific portions of the limb in extrinsic
coordinates appear to contribute to generalization (Krakauer et
al. 2006). It appears that these cues act implicitly, suggesting
that although plan-based generalization may be measured via
explicit reports of “aiming,” as in the present study, explicit
knowledge may not be a prerequisite for some plan-based
generalization to occur. We hypothesize that the reference
frame of generalization is likely an internal representation of
the planned movement of the limb in extrinsic coordinates, and
that this plan can, in certain contexts, be “read out” explicitly
if subjects are required to do so. How abstract the relevant
memory is remains an open question.

In sensorimotor adaptation research, the generalization of
adaptation is presented as a spatial phenomenon—the general-
ization metric reflects the degree of adaptation at naive loca-
tions in space relative to a reference point at an overtrained
location. This leads to the characterization of generalization in
physical space, which can be associated with directional or
velocity-tuned neurons in motor cortex (Paz et al. 2003) or the
cerebellum (Coltz et al. 1999). However, the generalization of
explicit planning may not be a question of representing phys-
ical space. The shapes of generalization functions from various
domains of psychophysics—for instance, in auditory and vi-
sual systems—are strikingly similar to each other, suggesting a
universal law of generalization across an abstract psychologi-
cal dimension (Shepard 1987). It may be that while the Gauss-
ian-like generalization of adaptation is constrained by a spa-
tially tuned population code, the factor that may dictate the
center of that function, the explicit plan, is a context-sensitive,
abstract psychological construct concerning the dynamics of
the learning environment and the goals of the learner. Such a
relationship between high-level and low-level representations
in sensorimotor learning provides an intriguing example of
multisystem interaction in the CNS.
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