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Sensorimotor adaptation tasks have been used to characterize processes
responsible for calibrating the mapping between desired outcomes and motor
commands. Research has focused on how this form of error-based learning
takes place in an implicit and automatic manner. However, recent work has
revealed the operation of multiple learning processes, even in this simple form of
learning. This review focuses on the contribution of cognitive strategies and
heuristics to sensorimotor learning, and how these processes enable humans to
rapidly explore and evaluate novel solutions to enable flexible, goal-oriented
behavior. This new work points to limitations in current computational models,
and how these must be updated to describe the conjoint impact of multiple
processes in sensorimotor learning.

The Versatility of Human Motor Control
Flexible use of the upper limbs is fundamental to our species. The ability to manipulate objects
with our hands, coupled with an expanding capacity to plan future states, was crucial for the
survival of our ancestors [1]. Dexterous arm movements confer a tremendous advantage for
efficiently harvesting foods in varied environments, as well as for manufacturing and manipulating
tools. Indeed, Darwin argued that human ancestors’ use of thrown projectiles may have been an
adaptation brought about by the pressure to hunt, and suggested that this distinctive behavior
may be linked to the emergence of bipedalism [2,3]. Although other primates have occasionally
been shown to perform analogous upper-limb behaviors, these actions are rarely observed and
lack much of the precision of human throwing [4–6].

Many classic studies of sensorimotor learning have been based on reaching and throwing
movements, and the results help us to gain fundamental insights into foundational ideas such as
the trade-off of speed and accuracy [7–10] and the representation of sensorimotor dynamics
[11]. One important subfield of motor-learning research employs adaptation tasks to ask how an
internal model, a representation of body–environment interactions, is calibrated to support
feedback and feedforward control [12]. The internal model concept has provided a useful
theoretical tool to understand how people adjust their behavior when moving in atypical force
fields or when the visuomotor mapping is altered. These paradigms capture computational
problems that enable us to skillfully manipulate objects when dynamics fluctuate (e.g., the
changing weight of a bottle as we consume its contents) or when environmental factors require
that we adjust our movements (e.g., throwing a frisbee on a windy day). Building on a rich body of
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neurophysiological and neuropsychological evidence [13–17], and articulated in sophisticated
computational models [18–22], this form of incremental motor learning has provided a funda-
mental characterization of one important function of the cerebellum.

Models of error-based learning have provided a reasonable approximation of behavior. For
example, a simple state-space model [18] in which an error signal is used to recalibrate an internal
model from trial to trial, captures the general shape of the learning function, one in which
performance changes follow a negatively-accelerating exponential (or linear in log–log coordinates
[23]). However, these models fail to capture particular features of performance such as spontane-
ous recovery and savings [20,24]. The inadequacy of these models reflects the complexity of
human motor performance: we are flexible, generalist problem-solvers, and, as shown in studies
of learning across diverse task domains [25–27], readily employ multiple learning systems to solve
the problem at hand. In studies of sensorimotor adaptation, this means that the learner, when
presented with an unexpected and salient perturbation, is likely to generate a compensatory
strategy or heuristic. Much as the spear fisher adjusts his aim to account for the refraction of light in
water, a participant might opt to aim to the side of a target if an opposing force unexpectedly
displaces the limb or a visuomotor perturbation results in a large reaching error.

Until recently, strategy use has been considered a nuisance [13] in studies of sensorimotor
adaptation, and experimental instructions are often designed to actively discourage this behavior
[14,28]. Moreover, the use of heuristics, such as an explicit change in aiming, has been ignored in
computational models of the learning process. However, the flexibility of the human motor
system allows us to supplement the calibration process. Strategies can allow us to use our
planning abilities to rapidly find ‘good-enough’ solutions, ones that might achieve functional
performance as the calibration process slowly and subtly homes in on the precise dynamics. In
this paper we review recent developments in studies of sensorimotor adaptation, highlighting
work that has provided a richer picture of the operation of multiple learning processes and new
insights into how these processes support skilled motor behaviors.

Using Multiple Learning Processes in Response to Sensorimotor
Perturbations
The physics of the body and environment are in a continuous state of flux: not only do long-term
changes arise from growth, development, and injury, but, in the short-term, muscles fatigue and
sensory conditions fluctuate. The motor system must rapidly adjust to these variable conditions,
and the ease with which we maintain calibration belies its computational complexity [29].

To study this calibration process, researchers have employed a variety of learning tasks–
including prism adaptation [14,28,30,31], visuomotor rotations [32,33], and force-field learning
[11]–in which a perturbation is introduced to alter the relationship between a movement and the
resulting sensory feedback. Across a range of contexts, performance typically follows a
stereotypical learning function (Figure 1A) driven by a gradient-descent process in which the
error is reduced in a continuous, monotonic manner. When the perturbation is removed a
persistent ‘after-effect’ is observed, taken as the signature of a recalibrated sensorimotor
mapping. Over time, the after-effect diminishes at roughly the same rate as that observed
during the initial acquisition phase, eventually returning to the baseline, non-adapted state.

However, this formulation misses a common-sense approach to the problem faced by the
participants in such experiments. While throwing darts one evening, imagine that you don a pair
of prism glasses and then see a dart land far to the right of the target. It would be reasonable to
suppose that an intelligent agent would take steps to volitionally compensate for the perturba-
tion. For example, you might aim to the left of the target on the next trial. Indeed, such
compensatory strategies are essential on windy days for golfers and placekickers.
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In one oft-cited prism adaptation example, several individuals displayed extremely rapid learning,
completely reducing their error on a throwing task after a single trial [28] (Figure 1B). When
queried, these individuals reported using an explicit strategy, estimating the error induced by the
glasses and purposively aiming in the opposite direction to negate the perturbation. Interestingly,
this strategy proved to be unstable, with successive movements increasingly overcompensating
for the prismatic distortion. When instructed to throw ‘where the target appeared’, their
performance again took the form of the stereotypical learning function, indicating that perfor-
mance may reflect the combined effects of strategy use and an implicit form of recalibration.

One clever way to directly examine this hypothesis involved a variant of the standard visuomotor
rotation task, one in which participants were given explicit information about the perturbation
and were instructed to use a compensatory strategy [34]. Vision of the hand was occluded and
feedback was limited to the display of a circle that indicated the position of the hand at the end of
the movement. After an initial block of trials with veridical feedback, a 458 counterclockwise
perturbation was imposed. Crucially, after two reaches in this altered environment the experi-
menter intervened, describing the perturbation and instructing the participants to aim in the
clockwise direction. To facilitate the use of this strategy, landmarks were positioned at 458
intervals around the target. Thus, by aiming to the landmark 458 clockwise from the target, the
perturbation could be fully negated.

As would be expected, participants performed perfectly on the subsequent trial: using an aiming
strategy enabled one-trial learning (Figure 1C). However, over the next 80 trials, the movements
of the participants began to ‘drift’ in the direction opposite the perturbation. This paradoxical
behavior–where performance worsened with practice–suggests that the motor system contin-
ued to calibrate the motor commands based on the mismatch between the intended reach
location (the aiming landmark) and visual feedback, while ignoring feedback about task accuracy
(the difference between the target location and observed feedback). In a subsequent experi-
ment, it was shown that the drift reversed with extended training, an effect attributed to an
adjustment in the aiming strategy (Figure 1D) [35]. This non-monotonicity, together with evidence
using various other methods, has made it clear that strategy use and implicit recalibration
constitute dissociable and relatively independent learning processes, with their dynamic inte-
gration resulting in the observed task performance [24,34–45].
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Figure 1. Explicit Processes in Motor Learning. (A) The canonical human motor-learning curve, with the preliminary
baseline period (region 1), the learning block where a sensorimotor perturbation is applied (region 2), and a ‘washout’ period
where the motor system is recalibrated back to baseline (region 3). (B) Data from a subset of participants who ‘cheated’ in a
prism adaptation study–that is, who used an aiming strategy to adjust their behavior after the first perturbed trial (black X).
Although this immediately eliminated the error, performance became worse over subsequent trials (red line). When
instructed to stop aiming, the error became larger and reversed in sign. Simulated data are modeled after [28]. (C) After
the first perturbation trial in the strategy task (black X), participants are instructed to counter the rotation by aiming towards a
landmark displaced from the target. This results in immediate task success. However, performance subsequently
deteriorates (’drifts’) due to the operation of an implicit learning process. Simulated data are modeled after [34]. (D) If
the training period is extended, the error arising from implicit drift is eventually negated by an adjustment in the strategy. An
after-effect, indicative of recalibration, is evident when the rotation is turned off and the participants are instructed to reach
directly to the target. Simulated data are modeled after [35].

Trends in Cognitive Sciences, July 2016, Vol. 20, No. 7 537



The instructed-strategy procedure [34] has provided important insights into the computational
constraints on these two processes. However, it does not address how or whether people
develop and modify strategies in a more spontaneous manner; that is, when the experimenter
does not intervene and provide explicit instructions. To address this issue, we developed a task
that provides a trial-by-trial measure of the contributions of explicit aiming and implicit recali-
bration [24,37–39,45]. To assay strategic aiming, participants verbally report their aim direction
before each reach, providing these reports both before the perturbation and over the course of
learning (Figure 2A,B). Using a simple subtractive procedure (reach angle minus aiming angle),
we can estimate the precise state of implicit recalibration in a continuous manner. Interestingly,
the lion's share of early learning, especially with large perturbations, is associated with aiming
and not recalibration [38]. Furthermore, and perhaps more surprising, aiming remains prevalent
even in the late stages of learning, a result that challenges the standard belief that asymptotic
performance only reflects the state of a recalibrated sensorimotor mapping [37–39]. Various
control conditions indicate that these results are not an artifact of the aiming report task [37,39].
The learning curves and after-effects in this task are similar to those observed in standard
visuomotor rotation tasks, suggesting that strategic processes operate even when the task
context (e.g., instructions, landmarks) does not prime their use.

Implications for Computational Models of Sensorimotor Learning
The field of sensorimotor learning has benefited from the development of rigorous computational
models that not only account for observed behavioral results in healthy and neurologically
impaired populations but also generate many testable predictions [18,20,46,47]. As noted in the
introductory section, prevailing models of the canonical learning curve use algorithms that
capture a gradient-descent reduction of error. The most prominent of such models is the
two-parameter ‘state-space’ model [18], where a Markovian learning rule is used to update the
motor state and account for performance errors on a trial-by-trial basis. One parameter
describes a fixed learning rate, the other corresponds to a retention or memory term.

An important extension of this model was motivated by the idea that performance changes may
reflect the operation of multiple learning processes that operate at different time-scales [20]; for
example, one process might learn quickly with a short retention constant, whereas a second learns
more slowly with longer retention. Various puzzling phenomena observed in motor adaptation
tasks, including spontaneous recovery [20,48] and savings [24,49–51], can be explained by this
multiple-rate model. Moreover, this work inspired new ways of placing constraints on computational
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Figure 2. Measuring Strategy Use in a Sensorimotor Adaptation Task. (A) To obtain a direct assay for aiming
strategy, participants are required to explicitly report their aim location before each trial. The magnitude of implicit learning
can be estimated by subtracting the aiming angle from the measured movement angle. (B) There is a large contribution from
explicit re-aiming immediately after the perturbation, but this decreases over time. By contrast, implicit learning is slower and
monotonic. Note that the estimated state of remapping matches precisely the magnitude of the aftereffect at the start of the
washout phase. Data adapted from [37]. (C) The fast and slow components of the two-rate state-space model [20] closely
resemble, respectively, explicit and implicit learning [39].
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and neural mechanisms of sensorimotor learning. For example, whereas different environments
may demand rapid changes (e.g., walking on granite or walking on sand), the body is generally
stable. It would be advantageous to use error signals that operate at different rates depending on
the nature of the representations [52]. In terms of neural systems, it has been proposed that fast
cerebellar learning allows rapid error reduction when learning a new skill or mapping, whereas
slower learning within the motor cortex is essential for retention [53].

However, it is not clear how processes such as strategic planning fit into the picture, especially in
the case of one-trial learning. One solution is to associate explicit processes with the fast process
of the two-rate model, involving implicit recalibration with the slow process [39] (Figure 2C). This
framing is in accord with results showing that explicit, fast learning is more flexible than
sensorimotor recalibration, enabling generalization to new target locations, perturbation sizes,
and other variations in task demands [38]. Indeed, many markers of human sensorimotor
learning, including savings [24] and structural learning [54], are likely products of our flexible
ability to quickly select an appropriate movement plan.

A second major issue concerns the nature of the error signals used for learning. Current versions
of multi-rate models assume that different learning mechanisms operate on the same error
signal. However, it is increasingly clear that implicit and explicit forms of learning respond to
distinct error signals (Figure 3A): implicit recalibration is driven by the difference between the
expected and observed outcome, referred to as the sensory prediction error [29]. By contrast,
strategy learning is sensitive to the difference between the goal and observed outcome, or what
is referred to as performance error [35]. Note that in most experimental contexts, and in the
natural world, these two types of errors are confounded: we usually aim at the target of our
movements, and therefore the expected outcome is the same as the goal. However, experi-
mental manipulations such as the instructed-strategy task [34] or aiming report task [24,37–
39,45] decouple these error signals. Thus, in the strategy task, the drift phenomenon described
above occurs because the recalibration system is presented with a large error signal–the
difference between the aiming location and the rotated cursor, even when performance error
is negligible (as in the first aiming trials). Indeed, when these error signals are decoupled, it
appears that implicit recalibration is completely insensitive to task success [34,35]. The non-
monotonic shape of the performance curve in the strategy task reflects the fact that participants
have to ‘re-aim’ to offset the consequences of a modular implicit learning process driven by
sensory prediction errors [24,35] (Figure 3A).

This new conceptualization will require our computational models to be revisited. Not only is it
necessary to incorporate distinct error terms for explicit and implicit processes, but it may also
be necessary to reconsider whether these processes utilize different learning algorithms. Recent
work suggests that the gradient-descent algorithm may be an inappropriate characterization of
implicit learning: the learning function and asymptotic state of recalibration do not appear to be
proportional to error size [38,55–57] and, when isolated from task performance, recalibration
appears to proceed in fixed, discrete-like steps [57]. Likewise, explicit learning appears to be
highly non-monotonic, producing behaviors more consistent with active exploration and/or
hypothesis-testing [37]. Thus, the stereotypical learning curve may not reliably reflect individual
learning curves, but may instead be an artifact that arises from averaging data across individuals
[58]. A more-accurate account of the performance function will require models that reflect
the combined operation of explicit and implicit learning processes and their respective error
signals (Figure 3B).

Neural Systems for Explicit Aiming and Implicit Recalibration
The notion that learning reflects the conjoint operation of multiple learning systems is prevalent in
many cognitive domains such as category learning, recognition memory, and reinforcement
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learning [25,26,59]. The work of Milner and colleagues with amnesic patient H.M. was, of course,
highly influential in the development of memory taxonomies, and in particular the striking
distinction between explicit, or declarative memory, and implicit, procedural memory [60,61].
Although the initial demonstration of spared implicit learning in H.M. came from motor tasks such
as mirror drawing, subsequent work revealed varying capacities for implicit learning on a range of
perceptual tasks [60]. This work has inspired a half-century of research on the neural correlates
of different memory processes, with the insight that learning, even within a taxonomic branch, is
likely to be highly distributed.

Neuroimaging studies have shown that areas including, but not limited to, prefrontal cortex,
premotor and primary motor cortices, parietal cortex, basal ganglia, and cerebellum are
recruited during sensorimotor adaptation tasks [62–69]. Of particular interest here has been
the cerebellum. Dating back to the 19th century, this structure has been recognized as essential
for motor coordination and learning [70]. Inspired by its unique anatomy and physiology, detailed
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Figure 3. Multiple Error Signals in Sensorimotor Adaptation Tasks. (A) Dissociated error signals for recalibration
(sensory prediction error) and strategizing (performance error). (B) A simplified schematic of the primary processes thought
to be involved in voluntary movement. Cognitive processes (green box) provide input to implicit motor execution processes
(pink box). As part of the planning process, an aim is selected based on the task goal. The control policy constitutes the
precise movement plan(s) that correspond to the selected goal, and results in a motor command to the limb. The motor
command not only drives the movement but is fed into a forward model to generate a sensory prediction. This prediction is
compared to the feedback to define the sensory prediction error, a signal that is used to update the forward model and
control policy. Performance error feedback influences the planning process, allowing for strategic adjustment. The majority
of research in motor learning has focused on details of the forward model and limb dynamics (pink box). Further work should
also address the computations occurring at the planning stages (green box).
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models of cerebellar learning [71–74] have been developed and refined, using tasks that involve
adaptation of eye-movement reflexes [51,75]. In terms of reaching studies, patients with
cerebellar degeneration consistently show attenuated adaptation in response to sensory per-
turbations [14,15,36,47,76]. Furthermore, cerebellar activity is correlated with sensory predic-
tion errors, the putative signal for sensorimotor recalibration [77]. Taken together, there is general
consensus that the cerebellum is essential for keeping the motor and sensory systems cali-
brated across a range of contexts.

What are the putative neural substrates for the more cognitive contributions to motor learning? In
terms of explicit processes such as strategy use, it is noteworthy that frontal lobe regions, including
lateral and medial aspects of prefrontal cortex, as well as premotor cortex, often exhibit increased
activity during the early phases of sensorimotor learning [62,64,78]. Although the functional role of
the prefrontal activations have typically been described in terms of meta-cognitive control pro-
cesses such as planning, working memory, or monitoring [67,68,78], it would also be reasonable
to suppose that these regions are essential for strategic changes in aiming, consistent with a more
general view that the frontal lobes are essential for action selection when the sensory–motor
mapping is novel or arbitrary [79]. Aiming, at least when invoked to hasten learning in response to a
perturbation, requires indirect mapping with the direction of the action being displaced from the
target, similar to the spear fisher accounting for the refraction of light in water.

The instructed-strategy task [34] has revealed intriguing differences between the effects of
cerebellar and frontal lobe damage: patients with cerebellar degeneration actually perform more
accurately than matched controls on this task, showing attenuated drift after implementing an
aiming strategy [36]. Their impaired sensitivity to sensory prediction errors confers a form of
‘immunity’ to maladaptive recalibration in this task. By contrast, patients with prefrontal lesions
from stroke tend to show greater drift than their matched controls [80]. We assume that this
pattern reflects a deficit in being able to adjust their aiming strategy, even when intact recalibra-
tion has led to a gradual increase in performance error. In line with this hypothesis, older adults,
assumed to have mild forms of frontal lobe dysfunction, show intact implicit learning but reduced
explicit learning in visuomotor adaptation tasks [44].

We speculate that these results suggest a key role for the frontal lobe in aiming. However, there
are reasonable alternative hypotheses to consider. For example, the excessive drift in our study
with prefrontal cortex patients [80] could reflect insensitivity to performance error, perseveration,
or even a ‘hyper-sensitive’ calibration system (e.g., a cerebellum unchecked by the cortex).
Future work that directly manipulates and measures different markers of implicit and explicit
processes will be necessary to advance our understanding of the functional contributions of
different neural systems to sensorimotor learning.

Beyond Adaptation: Towards a Broader View of Motor Learning
Tools from statistical decision theory and Bayesian statistics may prove useful in developing
descriptive models, as well as offering new ways to characterize mechanisms of motor learning
[81,82]. Aiming locations could be thought of as (indirect) spatial goals, cached motor com-
mands as action options, and the planning and execution of a specific command as an enacted
decision. The honing of a true motor skill, as opposed to adaptation to an external perturbation,
has been theorized to entail a model-free reinforcement learning process [83]. Thus, learning in a
reaching task can be characterized by a trade-off between exploration and exploitation [84],
where strategic processes initially explore the manifold of actions that may yield task success,
and, once a solution is found, the rewarded movement is reinforced over time. This approach
helps to shed light on the relationship between motor variability and learning [85]: the operation
of cognitive strategies, especially prominent during early learning, may confer rapid dimension-
ality reduction (i.e., reducing the space of possible solutions).
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Insights gained from the study of strategy-use point to other aspects of cognition that are likely to
be relevant for the study of sensorimotor learning. For example, there can be costs in motor
performance from cognitive control [86], an idea captured by the folk psychology notion that
experts are wise to not ‘think’, but just ‘do’–reflected in the venerable model of Fitts and Posner
on the stages of skill acquisition [87]. However, we cannot assume that the reduction in cognitive
contributions to performance implies that all learning has shifted to the implicit calibration
system. There appear to be multiple forms of implicit learning: in addition to error-based
remapping, the evidence suggests that changes in performance also reflect contributions from
associative processes such as use-dependent learning and operant conditioning [50,88,89].

Moreover, it is unclear if this explicit component ever really ‘disappears’. For instance, profes-
sional riflemen adeptly use ‘Kentucky windage’ to adjust their aim to correct for the direction of
the wind. In this and other cases, cognitive strategizing is the mark of an expert, not an amateur.
Indeed, the types of cognitive strategies discussed here are not limited to motor tasks: a
generalized capability for one-trial learning has obvious implications for learning writ large (see
Outstanding Questions).

Concluding Remarks
Ultimately, it is crucial to incorporate the influence of cognitive planning into any realistic and
comprehensive model of human sensorimotor learning. High-level motor planning is not only
relevant to spearfishing, darts, or shooting: the ability to execute aimed movements–to rapidly,
accurately, and flexibly perform planned, multi-joint movements to interact with the environ-
ment–is a hallmark of human behavior.
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Outstanding Questions
How should aiming strategies be mod-
eled and integrated into standard mod-
els of sensorimotor learning? How can
such models be modified to include
ideas from work on decision making
and reinforcement learning to provide
a comprehensive picture of motor per-
formance and learning?

What are the putative neural substrates
that contribute to the cognitive pro-
cesses underlying motor strategies
and heuristics, such as aiming? How
much do these substrates overlap with
the known neural architectures involved
in planning and decision-making?

Do strategic processes and recalibra-
tion processes directly interact, or
are the systems psychologically and
neurally ‘quarantined’ from each other?

Do explicit strategies become proce-
duralized over time as a true skill is
acquired?

What aspects of ‘cognitive’ mecha-
nisms for motor learning are shared
with other species and which, if any,
are unique to humans?
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