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Abstract

A fundamental feature of the human brain is its capacity to learn novel motor skills. This
capacity requires the formation of vastly different visuomotor mappings. In this work, we ask
how these associations are formed de novo, hypothesizing that under specific training regimes
generalizable mappings are more readily formed, while in others, local state-actions
associations are favored. To test this, we studied learning in a simple navigation task where
participants attempted to move a cursor between various start-target locations by pressing three
keyboard keys. Importantly, the mapping between the keys and the direction of cursor
movement was unknown to the participants. Experiments 1 and 2 show that participants who
were trained to move between multiple start-target pairs had significantly greater generalization
than participants trained to move between a single pair. Whereas Experiment 1 found significant
generalization when start-targets were distal, Experiment 2 found similar generalization for
proximal targets, which suggests that generalization differences are due to knowledge of the
visuomotor mapping itself and not simply due to planning. To gain insight into the potential
computational mechanisms underlying this capacity, we explored how a visuomotor mapping
could be formed through a set of models that afforded construction of a generalizable mappings
(model-based), local state-action associations (model-free), or a hybrid of both. Our modeling
work suggested that without continued variability between start-target pairs during training,
model-based processes eventually gave way to model-free processes. In Experiment 3, we
sought to further test this shift in learning processes by exposing participants to initially high
variability before settling into a condition of no variability over a long-period of training. We found
that generalization performance remained intact after a prolonged period of no variability
suggesting that the formation of visuomotor mappings might occur at an early stage of learning.
Finally, in Experiment 4 we show that adding stochasticity in the mapping can also promote
model-based learning of a visuomotor mapping, suggesting that the learning may unfold
implicitly. Overall, these studies shed light on how humans could acquire visuomotor mappings
in their lives through exposure to variability in their feedback.
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Introduction

The first problem to be overcome in learning any novel motor skill is to associate

particular actions with desired outcomes. This problem has become increasingly complex in the

digital age, where the mapping between actions and outcomes can be as diverse as the

imagination allows – just consider the variety of action-outcome associations underlying digital

applications and video games. For example, using two thumbs to type a text message, using a

pinch motion to zoom in and out of content on a smartphone, or steering a car in a video game.

At first, learning these novel mappings is cumbersome and effortful but as learning progresses a

mapping between actions and outcomes is eventually formed, allowing the individual to use the

device successfully with ease. The formation of this mapping is arguably one of the most

important steps for learning any new motor skill (Fitts and Posner 1967; Adams, 1971;

Ackerman, 1988; Newell, 1985, 1991). Surprisingly, however, we know very little, with a few

exceptions (Mosier et al., 2005; Liu et al., 2011), about how novel motor mappings are

established de novo.

Traditionally, the question of how motor mappings are learned has been the focus of

sensorimotor adaptation tasks (e.g., prisms, visuomotor rotations, and force fields), which

impose a perturbation on the sensory outcome of a movement (Shadmehr and Mussa-Ivaldi,

1994; Martin et al., 1996; Krakauer et al., 2000). While adaptation tasks were originally thought

to serve as a model paradigm to study this question (Jordan and Rumelhart, 1992; Miall and

Wolpert, 1996; Shadmehr et al., 2010), in recent years, it has become clear that these tasks

may only pressure the recalibration of an existing motor mapping when faced with an externally

imposed perturbation – not the establishment of the mapping in the first place (Krakauer et al.,

2019; Hadjiosif et al., 2021). Only when these recalibration mechanisms fail to fully counteract

these perturbations in adaptation paradigms (Hadjiosif et al., 2021), may de novo learning

engage to develop a new controller for the task (Yang et al., 2021).
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While there have been numerous studies of operant conditioning and associative

learning, linking actions to outcomes, it is unclear the degree to which learning in these studies

reflects the formation of a motor mapping per se (Thorndike, 1927; Petrides, 1997; Elsner and

Hommel, 2004). It can be helpful, at least conceptually, to distinguish two levels of choice: a

more abstract, internal level of reasoning about goals and state changes, and a more external,

response-focused level about how to use movements to bring these plans to fruition. In many

studies, such as in spatial or maze navigation, the agent already knows the control policy of how

to move (i.e., how an action leads to a state change) and instead the focus is on reasoning or

learning at a more abstract level how the state change leads to a desired outcome in terms of

reward (Sutton and Barto, 1998; Simon and Daw, 2011). Conversely a different set of paradigms

focus entirely on externally-cued responses, without any internal plan. Such tasks include motor

sequence learning (Nissen and Bullemer, 1987; Willingham et al., 1989; Curran and Keele,

1993), discrete sequence production (Verwey, 2001; Abrahmase et al., 2013), and m x n tasks

(Hikosaka et al., 1995; Bapi et al., 2000), all of which can be viewed as a form of de novo motor

learning, establishing a relationship between arbitrary actions and outcomes. However in these

studies, there is no underlying mapping from internal goals, from which a generalizable, motor

map may form. Generalization to new situations or contexts is considered a hallmark feature of

a motor mapping, as opposed to rote memorization of stimulus-response associations

(Shadmehr and Mussa-Ivaldi, 1994; Mussa-Ivaldi, 1999; Shadmehr, 2004).

Furthermore, the different variants of these sequence learning tasks are externally

generated, such that the appropriate sequence of responses is fully specified by the

experimental stimuli (Bera et al., 2021). The participant must precisely follow the set of

stimulus-response pairs to be successful in the task. As such, they may only reflect a subset of

the kinds of motor skills that we perform in everyday life that are internally generated. Thus,

while there has been tremendous progress in understanding how externally-generated,
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stimulus-response mappings are learned, there has been comparatively less progress in

understanding how internally-generated, response-outcome mappings are formed.

The increased complexity and degrees of freedom available when learning an

internally-generated, response-mapping may be one potential reason why progress has been

slow. The difficulty is in designing and studying a task that is in the “Goldilocks zone” between

sufficient experimental complexity and analytical tractability (Opheusden and Ma, 2019). Fermin

and colleagues developed the grid-sailing task to fit within this zone to study the core problem of

learning an internally-generated mapping de novo: The formation of a novel and arbitrary motor

mapping (Fermin et al., 2010, 2016). Here, participants learn to navigate a cursor from various

starting locations to various target locations on a grid through a series of keypresses. The goal

is to navigate to the target location in the minimum number of moves as quickly as possible.

Importantly, there is an unintuitive and arbitrary mapping between the keys and cursor

movement that must be learned (i.e., the control policy).

While participants can learn this task within a relatively short period, it remains an open

question as to how this is accomplished (Fermin et al., 2010; Bera et al., 2021; Dundon, 2021).

The formation of a new mapping is not always guaranteed. If the task only demands the

repetition of a limited set of actions, then only local state-action associations may be learned – a

form of rote memorization, which is likely what occurs in studies of sequence learning. However,

if there is a greater degree of variability in training, then a richer representation of skill may be

learned, such as the formation of an internal model between the action-outcome space. This

would afford the ability to generalize outside the range of training (Schmidt 1975; Newell and

Shaprio, 1976; McCracken and Stelmach, 1977; Kerr and Booth, 1978; Catalano and Kleiner,

1984; Berniker et al., 2014) – an idea that echoes classic theories of stimulus variability in

learning (Estes and Burke, 1953; Raviv et al., 2022). These two forms of learning mirror the

instance-based and algorithmic processes of a classic theory for automatization (Logan 1988),

as well as the more modern notions of model-free and model-based reinforcement learning
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(Sutton and Barto, 1998; Daw et al., 2005, 2011; Haith and Krakauer, 2013; Raviv et al., 2023).

In particular, the latter formalism seems well suited to capturing the candidate mechanisms.

Model-based reinforcement learning is well suited to capture the covert formation of an abstract,

internal plan that can then be generalizably realized through a separately learned motor

mapping. This leads to the hypothesis that, much as in other circumstances such as operant

leverpressing (Daw et al., 2005), simpler model-free (stimulus-response) learning will instead

dominate when a narrow range of actions is overtrained.

Here, through a series of experiments, we seek to build on this work by leveraging the

grid-sailing task as a model paradigm to study how novel and arbitrary motor mappings are

learned de novo and characterizing how they may be learned through the model-free and

model-based reinforcement learning framework. We hypothesize that the formation and

representation of a novel motor mapping depends on the particular conditions of training.

Specifically, the degree of exploration between the number of potential action goals and

possible solutions to achieve that goal may pressure formation of a generalizable motor

mapping over local state-action associations (e.g., rote memorization of specific sequences of

actions). Generalization to untrained conditions will provide a key test for the existence of a

motor mapping.

Results

Experiment 1

Behavioral Results

How does training variability constrain learning and generalization of a visuomotor

mapping? Two groups of participants (n=32) performed a grid navigation task (Figure 1A) where

they moved a cursor from various start to target locations using the J, K and L keys of a

standard keyboard (see Methods for details). In the Single group, participants trained to move

between a single start-target pair, while in the Multiple group participants trained to move
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between multiple start-target pairs (Figure 1B). We predicted that performance improvements

for the Multiple group would be slower during training, but they would be able to generalize their

performance to novel start-target pairs, reflecting the formation of a key-to-direction mapping

rather than local state-action associations. In contrast, the Single group would show faster

performance improvements during training, but be unable to generalize to new start-target pairs.

Participants performed 260 training trials followed by 20 trials of generalization interleaved with

20 training trials.

Figure 1: Experimental task. A) Participants moved a cursor (ship) from
start to target (anchor) locations in a grid environment. For Experiments 1-3,
participants used a deterministic action mapping of three keys with moving
directions: bottom-left, right and top-left. In Experiment 4, the key-to-direction
mapping randomly changed after each keypress with a probability of 0.2 to any of
the remaining directions. B) In the four experiments, participants were trained
with a single or multiple start-target pairs (see Methods for details). A
generalization phase was presented after training where the target locations were
either seven (Experiment 1) or one move away (Experiments 2-4) from the
starting point. Blue and red circles represent the start and target locations and
the specific start-target pairs are indicated with numbers. Only one pair was
presented per trial.
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Figure 2A shows the proportion of optimal arrivals over trials for both groups, where an

optimal arrival is a trial where subjects arrive at the target using the minimum number of key

presses (7 moves). As expected, the Multiple group had a slower learning curve, however, both

the Single and Multiple groups reached the same level of performance by the end of the training

phase (comparison of the last bin of training trials between groups; t(29.06) = -0.5; p = 0.61;

Figure 2B). Of more importance is how well the groups perform when new start-target pairs are

introduced in the generalization phase (Figure 2C). Here, we performed a two-step analysis

where we first compared performance in the generalization phase to performance at the end of

the training phase before comparing potential differences in generalization between the groups.

For the Single group, we found that performance was significantly worse at the onset of the

generalization phase compared to the end of the training phase (t(15) = -1.21; p < 0.001). In

contrast, the Multiple group’s performance during generalization was similar to the end of the

training phase (t(15) = -1.21; p = 0.242). When comparing between the groups, it was clear that

the Multiple group performed significantly better than the Single group (t(29.9) = -5.1; p < 0.001;

Figure 2D), even when controlling for multiple comparisons (t(29.34) = -3.5; p = 0.001; Figure

2E).
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Figure 2: Behavioral results of Experiment 1. A) Proportion of optimal
arrivals over trials for the Single (green) and Multiple (gold) groups. The
dashed line indicates the beginning of the generalization phase. The solid
dotted line represents the median and the shading the interquartile range. B)
Proportion of optimal arrivals in the last bin of the training phase. C) Proportion
of optimal arrivals in the first bin of generalization (novel pairs). Red marks
indicate performance in the very first trial of generalization for all subjects. D)
Difference in the proportion of optimal arrivals between the first bin of
generalization and the last one of training. The dashed line here indicates no
performance change from training to generalization E) RTs over trials. F) RTs in
the last bin of training trials. G) RTs in the first bin of generalization H)
Difference in RTs between the first bin of generalization and the last one of
training.

We also examined how planning (reaction time, RT) evolved over training. RTs were

overall higher in the Multiple group group throughout training (Figure 2D; t(29.99) = -4.82; p <

0.001) and higher at the last bin of training trials (figure 2F; t(21.21) = -2.85; p = 0.009) but not

during the first bin of generalization trials (Figure 2G; t(19.36) = -0.17; p = 0.86). There was an

increase in RTs from the last training bin to the first generalization bin in the Single (t(15) = 9.54;

p < 0.001) and Multiple groups (t(15) = 2.34; p = 0.03), however, this increase was significantly

greater in the Single group (Figure 2D; t(21.96) = 2.14; p = 0.043). In addition, the groups only

differ in RTs over training, but not in any of the inter-key-intervals (Figure S1). Overall, greater

generalization in the Multiple group together with higher RTs suggest that this group could have
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relied more heavily on model-based planning computations involving the visuomotor mapping of

the task as opposed to the Single group which could have developed less computationally

demanding state-action associations.

Modeling Results

In order to explore the cognitive processes that give rise to the differences in

performance between the groups, we evaluated three different computational models. On one

end of the spectrum, we tested a model-free reinforcement learning algorithm which learns

state-action values on the grid using prediction errors. On the other end of the spectrum, we

implemented a model-based algorithm that learns the visuomotor mapping of the task and uses

it to find the shortest route to the target using tree search . We selected these models as they

make contrasting predictions about generalization performance in the task. A model-free

reinforcement learning algorithm would generate chance-level responses for states that have

not been experienced in the past, thus predicting poor generalization. A model-based algorithm

would instead be able to generalize once the visuomotor mapping has been learned. Finally, we

tested a hybrid between the model-free and model-based algorithms, which is a weighted sum

of the two components on each trial.The relative weighting is given by a timeseries of free

parameters, and can evolve over time. We used the logarithm of the marginal likelihood (LML)

as a metric for model comparison (Table 1).
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Groups Models LML LML

wins

Single

MF

MB

Hybrid

X̃ = -1560[-1919,-1397]

X̃ = -1985[-2279,-1672]

X̃ = -1581[-2087,-1404]

8/16

0/16

8/16

Multiple

MF

MB

Hybrid

X̃ = -1768[-2110,-1529]

X̃ = -1556[-2027,-1317]

X̃ = -1539[-1964,-1300]

0/16

5/16

11/16

Table 1: Model comparison using the Logarithm of the Marginal Likelihood
(LML) for Experiment 1. X̃ indicates the median value across subjects, and inside
the square brackets we show the interquartile range. In the third column we show
the number of subjects that according to LML were best described by a given
model.

For the Single group, half of the participants were best explained by the model-free

algorithm, whereas the other half were best explained by the Hybrid model. In contrast, for the

Multiple group, 31% (5 out of 16) of participants were best explained by the model-based

algorithm whereas 69% (11 out of 16) were best explained by the hybrid model. Using the LML

values, we also obtained model comparison metrics at the group level (Stephens, Friston, 2009,

2016, see methods for details; Figure 3A). According to this analysis, a random subject taken

from the Single group would have a 51% probability of being best described by the model-free

algorithm and 49% of being best described by the hybrid model. For the Multiple group, there is

a 26% and 74% probability that a random subject is best described by the model-based and

hybrid algorithms, respectively.
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Figure 3: Group model comparison and absolute goodness of fit for
Experiment 1. A: Probability that a random subject taken from the Single and
Multiple groups is best described by the tested models. Black dots indicate the
exceedance probability. B: Proportion of the variability in the data explained by
the models. Colored dots represent this value for the model with the best
estimate of the negative cross entropy (see Methods for details) and gray lines
represent the values for the other two models. Red and blue dashed lines
represent the negative entropy (upper boundary) and the performance of a
random model (lower boundary).

We also computed the probability that a given model is more likely than the others in the

population, i.e. the exceedance probability. According to this metric, there is a high probability

(>99%) that a hybrid model is better than the model-based and model-free in each group. In

addition, in order to evaluate how good the models were in the absolute sense, we computed

the proportion of the variability in our data that was explained by our models as compared to the

negative entropy, which is the upper boundary for any probabilistic model (see Methods for

details). The median proportion of the variability explained by the best model in the Single group

was 74%, whereas in the Multiple group it was 70% (Figure 3b).

Given that the hybrid best explained the majority of the participants’ data in both the

Single and Multiple groups, we analyzed the estimated weights toward the model-based

component across trials to see if there was any difference between the groups. Starting from

trial 60 and until the end of the training phase, the weight toward the model-based component in

the Multiple group was significantly higher (Figure 4). Similarly, the model-based weight was
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significantly higher in the Multiple group in the first ten trials of generalization compared to the

Single group. However, the Single group appeared to switch to a predominantly model-based

mode of operation, which would be the only way in this model for performance to improve

quickly when encountering new start-target pairs and is also consistent with the change in

reaction times. De novo model-based learning would have been possible since the target

location was 7 moves away from the starting location and participants were provided

move-by-move feedback about the consequences of each button press. For this reason, it is

unclear if participants in the Single group were using feedback to learn the mapping during the

generalization phase or if during the generalization phase they reverted to a memory of the

mapping already learned covertly during training, which we address in Experiments 2 and 3,

respectively.

Figure 4: Model-based weighting of the hybrid model over trials for the
Multiple (gold) and Single (green) groups of Experiment 1. A value of 1 reflects
fully model-based, while a value of 0 reflects fully model-free. The dashed line
demarcates the start of the generalization phase.

Experiment 2

In Experiment 1, we found that the Multiple group readily generalized their performance

to new start-target pairs during the generalization phase, while the Single group struggled to
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generalize early on during generalization. However, feedback was available during the

generalization phase, allowing the Single group to learn the mapping to recover performance,

which is suggested by their elevated RTs during the generalization phase. Here, we sought to

test this possibility by not providing feedback during the generalization phase and placing the

target only one move away from the starting location (Figure 1B). In addition, to prevent learning

during the generalization phase we removed the interleaved training trials. By removing the

sequential, multiple responses to arrive at the target in the generalization phase, we could also

rule out a potential confound due to planning of the sequential movements. If participants in the

Single group still underperform the Multiple group in this simple situation, it would provide

further evidence that they did not know or could not use the mapping to the extent that the

Multiple group could, by the end of the training phase.

Behavioral Results

Similar to Experiment 1, our analysis focuses on optimal arrivals and RT. Figure 5A

shows that the Multiple group has a slower learning curve but both groups reached the same

level of performance by the end of the training phase (Figure 5B; t(29.99) = -0.19; p = 0.84). Of

primary interest is how each group performed during the generalization phase where only 1

move was required and no feedback was provided. We first compared performance in the

generalization phase with performance at the end of training for each group separately before

looking for differences in generalization between the groups. The Single group’s performance

was significantly worse at the onset of generalization (first bin; t(15) = -5.03; p < 0.001)

compared to late in training. On the other hand, the Multiple group’s performance did not

significantly decrease between the training and generalization phases (t(15) = -1.24; p = 0.23),

and outperformed the Single group early (first bin; t(22.68) = -4.81; p < 0.0001) and late in the

generalization phase (second bin; t(19.41) = -3.1; p = 0.005). Notably, the performance of the

Single group still remained greater than chance (XX statistical test), which suggests that even
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though they performed worse than the Multiple group, they could have recalled some

knowledge about the mapping. The continued worse performance by the Single group in the

generalization phase suggests that they likely did not develop or maintain the mapping and

suggests that variability in training may be necessary for a model-based algorithm to be trained.

Figure 5: Behavioral results of Experiment 2. A: Proportion of optimal
arrivals over trials for the Single (green) and Multiple (gold) groups. The black
dashed line indicates the beginning of generalization trials. The red dashed line
indicates chance level of performance. The solid dotted line represents the
median and the shading the interquartile range. B: Proportion of optimal arrivals
in the last bin of training trials. C: Proportion of optimal arrivals in the first bin of
generalization (novel pairs). Red marks indicate performance in the very first trial
of generalization for all subjects. D: Difference in the proportion of optimal
arrivals between the first bin of generalization and the last one of training. The
dashed line here indicates no performance change from training to generalization
E: RTs over trials. F: RTs in the last bin of training trials. G: RTs in the first bin of
generalization H: Difference in RTs between the first bin of generalization and the
last one of training.

Similar to Experiment 1, RTs in the Multiple group were overall higher during training

(Figure 5E; t(16.06) = -8.31; p < 0.001) and higher at the last bin of training trials (Figure 5F;

t(28.13) = -4.22; p < 0.001) but not in the first bin of generalization trials (Figure 5G; t(26.48) =

-1.08; p = 0.28). RTs significantly increased from the last training bin to the first generalization
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bin in the Single (t(15) = 6.55; p < 0.001) but not in the Multiple group (t(15) = 0.41; p = 0.68). In

addition, this change in RTs was significantly greater in the Single group (t(26.43) = 3.34; p =

0.002). The differences in RTs increase suggest that the Multiple group could readily use the

mapping to arrive at the novel locations without the need to deploy further computational

resources, whereas the Single group had to switch from state action associations to learn the

mapping.

Modeling Results

As in Experiment 1, we evaluated a model-free, a model-based and a hybrid algorithm.

The results of the model comparison are shown in Table 2. According to the LML, in the Single

group, 69% (11 out of 16) of the participants were best explained by the model-free algorithm,

19 % (3 out of 16) by the Hybrid model and 12% (2 out of 16) by the model-based algorithm. In

the Multiple group, 56% (9 out of 16) of our participants were best explained by the

model-based algorithm, 37 % (6 out of 16) by the Hybrid model and 7 % (1 out of 16) by the

model-free algorithm.

Group Models LML LML

wins

Single

MF

MB

Hybrid

X̃ = -1233[-1513,-967]

X̃ = -1604[-1743,-1282]

X̃ = -1321[-1528,-1097]

11/16

2/16

3/16

Multiple

MF

MB

Hybrid

X̃ = -1355[-1632, -1164]

X̃ = -1220[-1392, -1083]

X̃ = -1220[-1446, -1057]

1/16

9/16

6/16
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Table 2: Model comparison using the Logarithm of the Marginal Likelihood (LML)
for Experiment 2. X̃ indicates the median value across subjects, and inside the square
brackets we show the interquartile range. In the third column we show the number of
subjects that according to LML were best described by a given model.

In addition, as part of our model comparison at the group level, in Figure 6A we show

that a random subject taken from the Single group would have a 74% probability of being best

described by the model-free algorithm, 19% of being best described by the hybrid model and

7% by the model-based algorithm. In contrast, in the Multiple group, there is a 59%, 35% and

6% probability that a random subject is best described by the model-based, hybrid and

model-free algorithms, respectively. According to the exceedance probability, there is a high

probability (>99%) that a model-free algorithm is better than the other models in the Single

group, whereas in the Multiple group there is a high probability (>99%) that the model-based

algorithm is better than the other models. Thus, while the predominant models were categorical

MB and MF in the current experiment (and the hybrid model less often favored, compared to the

previous experiment), importantly, some participants were still best described by a Hybrid model

in both the Single and Multiple groups. In Figure S2 we show the dynamics of the MB

component over trials (which even for subjects best fit by MB or MF is useful descriptively for

examining the dynamics of the model evidence). This has a similar trend as in Experiment 1,

being higher for the Multiple group during training and early in generalization. This corroborates

our hypothesis that the mapping was better learned or used by participants in the Multiple

group.
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Figure 6: Group model comparison and absolute goodness of fit for
Experiment 2. A: Probability that a random subject taken from the Single and
Multiple groups is best described by the tested models. Black dots indicate the
exceedance probability. B: Proportion of the variability in the data explained by
the models. Coloured dots represent this value for the model with the best
estimate of the negative cross entropy and gray illness represent the values for
the other two models. Red and blue dashed lines represent the negative entropy
(upper boundary) and the performance of a random model (lower boundary).

Experiment 3

The behavioral and modeling results from Experiments 1 and 2 when taken together,

suggest that training variability, as in the Multiple group, strongly encourages learning of the

visuomotor mapping rather than just local state-action associations (e.g., simple rote

memorization of a sequence of actions), as in the Single group. The modeling results also

revealed that there was a tendency for the model-free algorithm to gain preference for

behavioral output as training continued, which could reflect an economical choice to limit the

computational demands of using a model-based algorithm. However, in Experiment 1, when the

Single group was exposed to the new start-target pairs in the generalization phase the modeling

suggests that the participants start to either learn the visuomotor mapping since feedback was

available or they potentially recalled the mapping, which could have been at least partially

learned early on in training. In Experiment 2, when no sequential planning was required and

feedback was withheld, performance in the generalization phase remained worse for the Single

group compared to the Multiple group. However, their performance was still greater than

chance, leaving open the possibility that participants may have recalled (at least partially) the

mapping. As such, it remains unclear if the visuomotor mapping is learned to some degree early
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on and remains latent, which can be later recalled. To test this idea, in Experiment 3,

participants briefly trained in the Multiple condition before being exposed for a long period by the

Single condition, followed by a generalization phase where new start-target pairs were

introduced. If a visuomotor mapping is trained early on and maintained in memory – even if not

being used – then participants would show good performance in the generalization phase.

Alternatively, if the sequence is ultimately memorized via a model-free algorithm, it could also

cause forgetting of the mapping (model-based algorithm) resulting in poor performance in the

generalization phase.

Behavioral results

In this experiment, participants first performed 80 trials with multiple targets (Multiple

trials) followed by a generalization phase of 20 trials. Then, they performed 1000 trials with a

single target (Single trials) followed by a second phase of generalization of 20 trials (see

Methods) with our primary interest in their performance between the two generalization phases.

Importantly, the generalization phase was identical to Experiment 2 where the new targets were

only 1 move away and feedback was withheld to prevent learning. We found that prior to starting

each generalization phase, the performance of participants was not statistically different

between the Multiple or Single trials (Figure 7B; t(27.9) = 1.68, p = 0.104). Importantly,

generalization performance was not significantly different in the Single and Multiple trials during

training (Figure 7C; t(29.54) = 0.56, p = 0.57). Similarly, there was no significant change in

performance from training to generalization in the Multiple (t(15) = 1.05, p = 0.3) or Single (t(15)

= -1.43, p = 0.17) trials of the experiment, neither a significant difference among the change in

performance in the two trial phases (Figure 7D; t(29.52) = 1.77, p = 0.08). These results suggest

that early exposure to variability can allow people to learn the visuomotor mapping and that they

can recall it in the future if novel goals appear.
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Figure 7: Behavioral results of Experiment 3. A: Proportion of optimal
arrivals over trials. Participants were exposed to the Multiple trials (gold) followed
by the Single group (green). The black dashed line indicates the beginning and
end of generalization trials. The red dashed line indicates chance level of
performance.The solid dotted line represents the median and the shading the
interquartile range. B: Proportion of optimal arrivals in the last bin of training
trials. C: Proportion of optimal arrivals in the first bin of generalization (novel
pairs). Red marks indicate performance in the very first trial of generalization for
all subjects. D: Difference in the proportion of optimal arrivals between the first
bin of generalization and the last one of training.

Experiment 4

It is well-established that skill learning can involve both explicit and implicit processes to

varying degrees depending on the training conditions (Jiménez et al., 2006; McDougle et al.,

2015; Taylor et al., 2014). In our prior experiments, the visuomotor mapping is relatively simple

(i.e., three keys map to three cursor directions) and, as a result, it is possible that participants

may have developed explicit knowledge of the visuomotor mapping and/or the sequence of key

responses. The latter option is highly likely in the Single conditions in Experiments 1 and 2

where participants only trained to move between one start-target pair. The former is also likely in
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the Multiple condition where participants could have used an explicit representation of the

mapping to simulate action-outcome associations when encountering novel start-target pairs in

the generalization phase. To address these possibilities, we introduced a degree of stochasticity

in the key-to-direction mapping such that there was a chance on each keypress that the cursor

could move to a random direction. Introducing stochasticity between stimulus-response

mappings is a common method to blunt awareness and explicit learning in studies of motor

sequence learning. By leveraging this method, we ask two questions: 1) Are the performance

improvements and generalization observed in the Multiple condition, the result of an explicit or

implicit representation of the visuomotor mapping? 2) When explicit learning is blunted, is a

visuomotor mapping formed implicitly leading to generalization in the Single condition?

Behavioral Results

In this experiment, we aimed to test whether using a stochastic version of the task would

blunt explicit learning of the visuomotor mapping, which has proven successful in studies of

sequence learning (Jiménez et al., 2006; Schvaneveldt and Gómez, 1998). Two groups of 16

participants performed the grid sailing task as in Experiment 2, in the Single and Multiple

conditions, with the exception that the keys moved the cursor according to an underlying

key-to-direction mapping with probability 0.8 and to any of the other adjacent directions with

probability 0.2. In addition, we evaluated the level of explicit knowledge of the visuomotor

mapping at the end of the task by asking participants where they thought the keys move the

cursor to. Specifically, pictures of the keyboard keys were displayed on the screen (J, K and L),

each of them followed by eight moving options indicated with arrows (top, top-right, right,

down-right, down, down-left, left and up-left). Participants had to select among the options the

one they believed was the true moving direction of the key (Figure S3).

As a result of the stochasticity in the task, optimal arrivals were rare, therefore as a

behavioral measure of performance we considered only arrivals to the target, regardless of the
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number of key presses. As in Experiments 1 and 2, the Multiple group learned more slowly than

the Single group (Figure 8A), but asymptotic performance was similar between the groups by

the end of the training phase (Figure 8B; t(26.73) = 1.31, p = 0.19). More importantly, there were

no differences in generalization performance between the groups (Figure 8C; t( 27.74) =

-1.3351, p = 0.1927). While there was no significant difference in the change of performance

from training to generalization between the two groups (Figure 8D; t (28.32) = -1.88, p = 0.07),

the Single group did significantly decrease its performance from training to generalization

phases (t(15) = -2.65, p = 0.01) whereas the Multiple group did not (t(15) = -0.34, p = 0.73).

At the end of the experiment, participants performed an explicit test where they were

asked to report the direction the key moved the cursor to. Both groups showed similar degrees

of explicit knowledge of the key-to-direction mapping (Figure 8E). For the Single group 68% (11

out of 16) knew all the keys correctly whereas 32% knew two, one or zero key directions. For

the Multiple group 62% (10 out of 16) knew all the keys correctly while 38% (6 out of 16) knew

two, one or zero key directions. We further explored whether participants that correctly knew the

mapping (scoring 3 in the explicit test) in either group had better generalization performance

than people that did not know it, or partially knew it (scoring lower than 3). While participants

who had full knowledge of the mapping optimally arrived at the target more often on average

than participants who had less knowledge, this difference was not significant (Figure S4). This

suggests that explicit knowledge may not be a strong determinant of how people perform in the

task.

Overall, the results of Experiment 4 show that both groups had similar explicit knowledge

about the mapping and that this knowledge was not related to participants’ generalization

performance. In addition, we found that adding stochasticity to the task improves generalization

performance in the Single group to the level of the Multiple group, suggesting that the former

learned the mapping, potentially by preventing them from memorizing the sequence solution to

the goal.
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Figure 9: Behavioral results of Experiment 4. A: Proportion of arrivals
over trials for the Multiple (gold) and Single group (green). The black dashed line
indicates the beginning of generalization trials. The red dashed line indicates
chance level of performance.The solid dotted line represents the median and the
shading the interquartile range. B: Proportion of arrivals in the last bin of training
trials. C: Proportion of arrivals in the first bin of generalization (novel pairs). Red
marks indicate performance in the very first trial of generalization for all subjects.
D: Difference in the proportion of arrivals between the first bin of generalization
and the last one of training. E: Number of participants that correctly knew zero,
one, two or three moving directions of the keys.

Discussion

A vast number of skills require the formation of novel visuomotor mappings. Sometimes

these mappings can be completely arbitrary like in video games, where an “up” press on a video

game controller can lead a virtual character to move or jump. The advantage of learning these

mappings, as opposed to simple state-action associations, is that the mappings can be used for

planning and generalization to novel contexts (Tolman, 1948; Behrens et al., 2018; Khan,

2018).
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Across four experiments, we investigated how training variability can promote the

learning of visuomotor mappings in a potentially model task paradigm consisting of moving a

cursor to target locations in a grid environment. In Experiments 1 and 2, we found that people

who trained with a higher number of start-target pairs (Multiple group) had significantly greater

generalization performance as compared to people trained with a single start-target pair (Single

group). Critically, in Experiment 2, differences in generalization persisted even when the target

locations were only one move away, suggesting that differences in generalization were due to

knowledge of the mapping and not due to differences in planning. These results are in line with

a large body of research in categorization (Vukatana et al., 2015), language (Lively et al., 1993),

problem solving (Pass and Van Merriënboer, 1994) and motor learning (Moxley, 1979), showing

that higher variability during training leads to better generalization, although initially making

learning more difficult (for a review see Raviv et al., 2022).

We propose that in our experiments this effect is driven in part by the use of different

learning processes in the Single and Multiple groups. We predicted that participants exposed to

low variability in the Single group would be more likely to rely on a rigid, model-free system.

Previous work has shown that in stable environments, this model is a parsimonious solution to

learn (Sutton and Barto, 1998). However it fails to adapt to volatile environments (Nassar et al.,

2010; Wilson et al., 2013; Ritz et al., 2018; Velázquez et al., 2019) or generalize to novel

situations (Daw et al., 2005; Daw et al. 2011). On the other hand, when participants were

exposed to higher variability in our Multiple group, we predicted that they would be more likely to

learn the underlying mapping of the task, which we represented by a model-based algorithm.

This model, in contrast, would be able to generalize well to novel target locations.

Overall, our computational analysis indicates that, when generalization trials were

isolated from learning in Experiment 2, most participants in the Single group were best

described by a model-free algorithm, whereas most participants in the Multiple group were best

described by a model-based algorithm. However, it is relevant to note that a hybrid model also
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explained an important proportion of our participants’ data, both in Experiment 1 and 2. This is

also consistent with previous findings showing that both model-free and model-based systems

underlie performance in decision-making and motor learning tasks (Huang et al., 2011; Haith

and Krakauer, 2013; Daw et al., 2005; Daw et al., 2011). In situations where both systems can

be involved, it is possible to evaluate the relative contribution of each of them to the overall

output of the model. When we performed this analysis for Experiment 1, we found that the

weight toward the model-based component was significantly higher in the Multiple group for the

majority of the training trials and early in generalization (see Figure 4), suggesting that this

component had a greater influence in subjects’ responses when variability was higher.

In addition to differences in task performance and model selection, we found that RTs

also differed significantly between the Single and Multiple groups in Experiment 1 and 2. In

particular, RTs were higher in the Multiple group in the training phase. Previous results have

shown that higher RTs could reflect the increased use of model-based, algorithmic computations

(Shepard and Metzler, 1971; McDougle and Taylor, 2019). However, differences could also be

attributed to people simply having more targets to choose from in the Multiple group as

described by Hick’s law (Hick, 1952). Therefore, RT results should not be interpreted in isolation

of generalization performance, especially in Experiment 2, and the computational modeling

findings.

In Experiment 3, we found that the benefit of having variable training over generalization

remained even after a long exposure to no variability. We believe this is a result of the formation

of the novel action mapping at an early stage of learning (Fitts and Posner, 1967), and the

abrupt change in variability could have separated the mapping memory from future updates

(Gershman et al., 2010; Heald et al., 2021), preventing it from being forgotten. Subsequently,

during the period of no variability, novel state-action associations could have been formed. If

separate memories for the action mapping and the state-action associations were formed, the

latter could have potentially been evoked by reducing the preparation time during generalization
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(Hardwick et al., 2019). Moreover, these results corroborate previous findings that indicate that

the benefits of variable training occur when variability is introduced early in learning as opposed

to later (Raviv, 2022), but only when it is not too high. In our experiments variable training

implied being exposed to four pairs of start-target locations, which were repeated at least 20

times each (early in learning Experiment 3) and up to 70 times (Multiple conditions in

Experiments 1 and 2), which we believe provided participants enough familiarization with each

of them. Had they experienced more variability, for example by changing the start-target pairs

every trial, performance would have been slower and the benefits in generalization could have

arrived later.

Finally, in Experiment 4 we discovered that adding stochasticity to the action mapping,

prevented the drop in generalization performance observed in Experiments 1 and 2 in the Single

group. We believe that the stochastic experimental design prevented participants from

completely relying on an explicit memorization of the sequence of keypresses to arrive at the

target. Instead, participants likely had to replan on the fly when the cursor moved in an

unexpected direction, essentially having the same effect as people that were trained in the

Multiple group in Experiments 1 and 2. Importantly, we also found that making the action

mapping stochastic had mixed effects on the level of awareness of participants about the true

key directions. As shown in Figure S4, the majority of subjects in the Single (68 %) and Multiple

group (62%) were able to indicate the actual movement direction of the keys. This contrasts with

previous studies on sequence learning where the same level of stochasticity prevented

participants from being aware of the underlying sequence. The degree to which this explicit

knowledge is necessary for training the mapping needs further investigation.

Overall, our results provide further evidence that people not only can build models about

their environment (Tolman, 1948) or their knowledge (Behrens et al., 2018; Constantinescu et

al., 2016), but also about their actions (Shadmeher, 2004). Importantly, we have found that this

can happen for skills that are built de novo. We propose that the acquisition of these models, in
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the form of action mappings, can be induced by training variability. Crucially, there is currently

not an overarching explanation why higher variability typically leads to better generalization, and

alternative hypotheses to the one of internal models would have to be ruled out (Raviv, 2022) in

future work.

Whereas most of previous studies in sequence learning like SRT, m x n tasks or discrete

sequence production have allowed the study of externally generated sequences specified by the

experimenter, there has been a recent interest in sequences that humans generate internally

(Fermin et al. 2010, 2016; Bera et al., 2021; Dundon et al., 2022), which, by not being

constrained, allow us to explore the planning processes that make humans arrive at given

solutions to achieve goals. A model task in this direction has been grid navigation. Our work

provides a step in this direction by further providing cognitive models of the processes that

might generate these sequences: model-based mapping learning or state-action associations.

We believe these types of tasks are good models of a variety of the activities that humans

perform in their lives such as playing video-games, musical instruments or sports, where

improvisation and self selection of actions is a common feature.

In addition, grid navigation as in the current experiments sits at the intersection of motor

learning and spatial navigation where the interaction of procedural and declarative processes

likely occurs. Previous studies have highlighted that participants with some impairment in

declarative knowledge do not perform as well as controls in similar tasks (Nissen and Bullemer,

1987). Therefore, grid navigation could be used as a testbed for how declarative knowledge

contributes to the acquisition of a motor skill. At the same time, it rests at the level of complexity

where it is still tractable to build relatively simple cognitive models to explain human

performance.

Limitations

We believe that in order to fully explore the scope of motor skill acquisition, a more

complex mapping could be used for future experiments, e.g., one with more actions or a less
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intuitive movement rule. This would make the learning process more closely resemble the one

that people go through in their lives where ceiling performance might be acquired over hours or

days of practice, unlike in our experiment where that level was acquired in minutes.

Regarding the cognitive models we explored in Experiment 1 and 2, it can be observed

in the absolute goodness of fit that there is still room for improvement at explaining our data

sets. As such, other components can be incorporated into our models that would potentially

improve the fit. For example, a persistence or switching component that captures responses

that do not depend on reward history but on choice history (Daw, 2011; Miller et al., 2019). A key

might be more or less likely to be pressed if it was pressed in the past regardless of the

outcomes. This autocorrelation among responses can occur within a state (what was pressed

the last time the ship appeared in state s of the grid?) or across states (what was pressed in the

previous moves while navigating across the states of the grid?).

On the other hand, the hybrid model that we tested has a time series of free parameters

(weights) that combines the MB and MF components, which makes its complexity grow with the

number of trials. Here, our goal was to explore the behavior of the weights with no

dependencies between them to let any trend show up on its own, however, alternative

reparametrizations are possible were is a function of , and the parameters of thatω
𝑡

ω
𝑡−1

function are estimated. This would reduce the complexity of the model and could be explored in

future work.

Finally, we have used Breadth First Search as a planning component in our model-based

algorithm given its simple implementation and uninformed structure. However, future work could

explore the use of path search algorithms that more closely resemble the planning processes of

humans. For example, the use of Heuristic-based algorithms would specify that some

trajectories towards the goal are more likely to be explored than others using a value function.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549179


This type of search algorithms have been used to explore how humans plan in board games

(van Opheusden and Ma, 2019), and their use in grid navigation could improve the models’ fit.

Methods

Participants: 112 undergraduate students (49 males, 58 females, 4 non-binary and 1

preferred not to say; mean age = 19.9, sd = 1.4) from Princeton University were recruited

through the Psychology Subject Pool. Sample sizes were based on prior studies of the grid

sailing task (Fermin et al, 2010, 2016; Bera et al., 2021). The experiments were approved by the

Institutional Review Board (IRB) and all participants provided informed consent before

performing the experiment.

Apparatus and task design: All experiments were performed in person using the same

computer equipment. Stimuli were displayed on a 60 Hz Dell monitor and computed by a Dell

OptiPlex 7050'a machine (Dell, Round Rock, Texas) running Windows 10 (Microsoft Co.,

Redmond, Washington). Participants made their responses using a standard desktop keyboard.

All experiments were programmed in CSS, Javascript and HTML, and run on a web browser

and hosted on Google Firebase. Subjects were seated in front of the computer and were asked

to follow the instructions to begin the task.

We employed a variant of the grid-sailing task based on Fermin et al. (2010) in which

participants were required to navigate a cursor from a starting position to a target location on a

9x9 grid using the J, K and L keys of their keyboard. On Experiment 1-3, each key moved the

ship deterministically to one of three possible directions: right, down-left or up-left. On

Experiment 4, the keys’ directions followed a stochastic rule (see below). At the onset of the

experiment, participants were provided with the following instructions “In this game, you will use

the letters J, K and L of your keyboard to move a vehicle through a grid to a target location. Your

goal is to arrive using the shortest route. If you arrive with the shortest route, you will see a

happy face. If you arrive using a different route, you will see a neutral face. If you do not arrive
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after a certain time, you will see a sad face.” After participants confirmed they understood the

instructions, the task began. The cursor was displayed as a ship and the targets as anchors.

Additionally, to make the task more engaging, it was performed with a background of the ocean

with quiet wave sounds and ‘bubble’ sounds every time the cursor moved.

On a given trial, the cursor and a target appeared in locations that varied across

experiments (see figure 1). Depending on the performance of the trial, subjects could receive

three types of feedback. If they did not arrive at the target in less than 10s, a sad face appeared

in place of the target, along with a “wrong sound” indicating they had failed. If participants

arrived at the target but not in the minimum number of key presses, a neutral face and sound

were presented. If they arrived using the minimum number of key presses, a happy face with a

“correct sound” was presented. The visual feedback remained on the screen for 1s after which

an inter trial interval of 500 ms occurred. Then, the next trial began. The experiment was divided

into a training and a generalization phase, which will be described in detail for each experiment

below. During the training phase of all experiments, the targets were placed seven moves away

from the start location.

Experiment 1 Procedure: The goal of this experiment was to determine whether

specific training regimes promoted the formation of local state-action associations or a

visuomotor mapping, which would manifest in a generalization phase. For all participants, the J,

K and L keys moved the ship to the down-left, right and up-left, respectively. The training phase

consisted of 260 trials which were followed by 20 generalization trials interleaved with 20

training trials, giving a total of 300 trials. Subjects were randomly assigned to one of two groups

that differed in the number of start-target pair locations presented during training. In the Single

group (n=16), a unique start-target pair was presented for all training trials. In this case, the

target could be reached using a unique sequence of key presses (e.g., J-L-J-L-J-L-K), however,

participants were not constrained or encouraged to do so.
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For the Multiple group (n=16), four start-target pairs were presented throughout training,

where each of them appeared 65 times. We randomized the pairs such that the same pair did

not show up more than twice in a row and all four pairs appeared once before observing them

again. Additionally, the target for each pair could not be reached using the same sequence of

key presses that arrived at other targets. In the generalization trials, four novel start-target pairs

were presented for both groups. The target was placed seven moves away from the starting

point just as in the training trials. Each of the generalization pairs was repeated five times but no

pair appeared more than twice in a row, and all four pairs were observed before showing them

again. No performance feedback (faces and sounds) was provided in generalization trials.

Experiment 2 Procedure: In Experiment 2, we tested whether differences in

generalization between the Single and Multiple groups in Experiment 1 when error-based

feedback was withheld and no (sequential) planning was required. To accomplish this, the target

locations during the generalization phase were shown only one step away from the starting

point as opposed to seven in Experiment 1. Twelve novel start-target pairs were created by

linking four start locations with three possible target locations. All pairs were presented at least

once, the remaining eight generalization trials were randomly chosen without replacement from

the available twelve. Importantly, in this experiment there were no training trials interleaved with

generalization ones. The reason to remove them was to prevent subjects from learning about

the mapping with the feedback from the interleaved training trials. This changed the number of

trials from 300 in Experiment 1 to 280 in Experiment 2. Additionally, In order to control for

mapping-specific effects, in Experiment 2 we randomized the directions each key was assigned

to across subjects. The training phase was the same as in Experiment 1 for the Single (n=16)

and Multiple (n=16) groups.

Experiment 3 Procedure: In Experiment 3, we tested whether a short exposure to the

training variability followed by a long exposure to no variability would be sufficient to learn the

mapping as well as maintain a memory of the mapping, thus affording good performance in the
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generalization phase at the end of the experiment. Participants (n=16) first trained during 80

trials with four start-target pairs (Multiple trials), then experienced 20 generalization trials with

target locations being one move away as in Experiment 2. We chose 80 training trials of training

given that in Experiment 1 and 2, asymptotic performance was reached in this time frame by the

Multiple group. Following the training phase, participants were exposed to one thousand trials of

a single start-target pair (i.e., Single trials), which was chosen randomly from one of the four

pairs experienced in the first 80 trials. Finally, they were exposed to a second generalization

phase of 20 trials.

Experiment 4 Procedure: The goal of Experiment 4 was to twofold. First, we sought to

test whether the visuomotor mapping was represented explicitly or implicitly. Second, we tested

whether training variability induced by stochasticity in the key-to-direction mapping during

training would prevent explicit memorization of the sequence and pressure learning of the

mapping, which would afford generalization. To accomplish this, we imposed a probabilistic rule

over the movement of the cursor. Specifically, during the training phase of both the Single

(n=16) and Multiple (n=16) groups, there was a 0.2 probability that the key moved the cursor to

any of the other seven directions different from the original mapping. We use this probability

based on previous studies on sequence learning that have found that adding this level of

stochasticity prevents participants from learning sequences explicitly. In order to evaluate

subjects’ awareness of the action mapping of the task, we asked them at the end of the

experiment to indicate the direction each key moved the cursor to (Figure S3). Generalization

trials were the same as in Experiment 2, with targets being one step away from the start

locations.

Behavioral data analysis: All analyses were performed using the R statistical software

(R Core team, 2023) or Matlab version 2022a (Natick, MA: The Math Works, Inc., 2022). Our

main behavioral measure was optimal arrivals to the target in Experiments 1-3, which was

defined as the minimum number of key presses to move the cursor to the target (7 moves). In

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549179


Experiment 4, due to stochasticity, our primary measure was simply arrival to the target even if

it was not in the minimum number of key presses. We also examined both reaction time (RT),

defined as the time between target presentation and the first key press, and inter-keypress

interval, defined as the time between each successive key press. These behavioral metrics

were binned every ten trials. When relevant comparisons were done between our Single and

Multiple groups, we used Welch’s t tests for unequal variances (Welch, 1947).

Computational modeling: In order to gain mechanistic insight into the learning

processes that could have given rise to the results of our experiments, we evaluated three

computational models that were fitted to data from Experiment 1 and 2. At one end of the

modeling spectrum, we implemented a prediction error RL model to characterize inflexible,

habitual behavior, which we believe could be induced in our Single group (model-free). Although

this model works in a relatively straightforward manner, it predicts poor generalization as it can

only know what to do in situations it has experienced in the past. At the other end of the

modeling spectrum, we used a Bayesian model along with a one-step planning process, to

represent a learner that acquires the true key-to-direction mapping and leverages it to decide

the best course of action (model-based). As we will describe below, this model would be able to

generalize well in our task and we believe a similar mechanism could be drawn on in our

Multiple group.

Model-free (MF): This model uses prediction errors to update the value of the keys on

each grid state. Model-free algorithms have received considerable attention in the past years

due to its simple trial-and-error mechanism, which can capture a wide variety of behavioral and

neural data (Schultz et al., 1997; Sutton & Barto, 1998; Miller et al. , 1995). In our task, it

updates the value v for pressing key k after a prediction error δ is observed. More explicitly, for

every time step t :

𝑣
𝑡
𝑘 = 𝑣

𝑡−1
𝑘 + αδ

𝑡−1
𝑘
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= ,δ
𝑡−1
𝑘 𝑟

𝑡−1
𝑘 − 𝑣

𝑡−1
𝑘

where r is the reward obtained and ⍺ is a free parameter that modulates the speed of learning. It

is important to note that v is computed for every state and target on the grid, but we have

removed those indexes for clarity. We define reward r in terms of the reduction of the

chessboard distance d to the target. Specifically:

or𝑟 =  1     𝑖𝑓  𝑑
𝑡

< 𝑑
𝑡−1

    𝑟 =    0     𝑖𝑓  𝑑
𝑡

≥ 𝑑
𝑡−1

 

, 𝑑 = 𝑚𝑎𝑥( 𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

−  𝑥
𝑐𝑢𝑟𝑠𝑜𝑟

,  𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

−  𝑦
𝑐𝑢𝑟𝑠𝑜𝑟

 )

x and y are the grid coordinates of the target and cursor. Then, the probability for pressing key k

at time step t is generated using a Softmax function:

ϕ
𝑡
𝑘 = 𝑒

β𝑣
𝑡
𝑘

𝑘=1

3

∑ 𝑒
β𝑣

𝑡
𝑘

,𝑅
𝑡
~𝐶𝑎𝑡(ϕ

𝑡
1, ϕ

𝑡
2, ϕ

𝑡
3)

where is the inverse temperature parameter and Rt is the key press at time step t. This model β

has two free parameters: ⍺ and , for which we specified per-subject prior distributions asβ

⍺~Uniform(0,1) and ~Uniform(0,10). Note that whereas many model-free approachesβ

(temporal-difference methods, etc.) to multi-step decision tasks of this sort recursively learn a

multi-step value function measuring distance to goal, here we streamline this approach slightly

by defining the target value at each step non-recursively, in terms of the simple chessboard

heuristic at each step. This is similar to advantage learning (itself a variant of the actor-critic),

but with the value function component fixed as the chessboard distance. We believe that the

reduction in the chessboard distance is an intuitive measure of reward in this model, as it is

equivalent to visually getting closer to the target. However, this form of distance assumes the

cursor can move to any of the adjacent locations, which is not true in our experiments, but is

reasonable in an agent that has no knowledge of the key-outcome mapping. As we will see in

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549179


our next model, the distance to the target can instead be measured as the number of key

presses away from it. When the available moves of the cursor are constrained, the key-press

distance can differ from the chessboard distance. More importantly, knowing the key-press

distance implies knowledge of the true key-outcome mapping, a fundamental property of our

next model.

Model-based (MB): In this model, a probability distribution over the key-outcome

mapping is updated using Bayes rule and subsequently used to reduce the number of key

presses away from the target. In particular, for every key, the cursor movement direction x is

assumed to be generated by a Categorical distribution:

𝑥
𝑘
~𝐶𝑎𝑡(θ

1
, …, θ

8
)

where ( ) are the true probabilities that the key k moves the cursor to each of the eightθ
1
, …, θ

8

adjacent locations. These probabilities are unknown but can be inferred using Bayes rule. In

order to do that, a prior distribution over ( ) has to be specified which represents the initialθ
1
, …, θ

8

knowledge of the key-outcome mapping. For reasons of conjugacy, it is convenient to choose a

Dirichlet distribution:

.(θ
1
, …, θ

8
)~𝐷𝑖𝑟 1, …, 1( )

Making the initial parameters equal to 1 gives no preference for any direction a priori.

Then, the posterior belief about the mapping is described by another Dirichlet distribution:
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(θ
1
* , …, θ

8
*)~𝐷𝑖𝑟 α

1
 , …, α

8( )

,α
𝑛

= 1 +
𝑗

∑ 𝟙(𝑗 = 𝑖)

where (j = i) is the number of times the key was observed to go in the ith direction. The
𝑗

∑ 𝟙

expected value of the parameters can be computed to have a vector of probabilities(θ
1
* , …, θ

8
*) π

instead of a vector of random variables:

,π
𝑖

=  
α

𝑖

𝑖=1

8

∑ α
𝑖

is the probability that the cursor goes to the ith direction. That is, if a key is pressed, theπ
𝑖 

cursor can end up in the

eight adjacent locations with

probabilities . Inπ

model-based reinforcement

learning corresponds toπ

the transition probabilities for

a given state and action. Our

model is a special case of

these algorithms for which

the transition probabilities

are the same for all states.

These probabilities are then

used to compute the

expected distance to the
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target in the next time step if that key was pressed:

,𝐸 𝑑( ) =
𝑖=1

8

∑ 𝑑
𝑖
π

𝑖

where d is the actual distance to the target, that is, the number of key presses away from it. In

order to compute d, we used Breadth First Search (BFS; Erickson, 2019). BFS transforms our

grid environment into a graph where each node represents a grid state and nodes are

connected among themselves according to the possible transitions in the grid given the action

mapping. BFS is thought to represent the planning process in the model-based algorithm and

can be implemented in the pseudocode of Algorithm 1.

What BFS does is to search on the graph created with the grid environment by first

visiting the nodes that are one move away from the current location, then it checks if the target

is there; if it isn't, then it continues searching in the nodes that are two moves away and so on. It

continues this process until it reaches the target. We can use to represent the value of− 𝐸 𝑑( )

pressing a given key. Changing the sign to negative makes lower distances more valuable, then

these quantities can be plugged into a Softmax function:

ϕ
𝑡
𝑘 = 𝑒

−β𝐸 𝑑( )
𝑘

𝑘=1

3

∑ 𝑒
−β𝐸 𝑑( )

𝑘

.𝑅
𝑡
~𝐶𝑎𝑡(ϕ

𝑡
1, ϕ

𝑡
2, ϕ

𝑡
3)

This model has one free parameter: , for which we set a prior ~Uniform(0,10).β β

Hybrid model: We considered a third model which is a weighted combination of the RL

and Bayesian models:

ϕ
𝑡
𝐻𝑦𝑏𝑟𝑖𝑑 = ω

𝑡
ϕ

𝑡
𝐵𝑎𝑦𝑒𝑠 + (1 − ω

𝑡
)ϕ

𝑡

𝑅𝐿

,𝑅
𝑡
~𝐶𝑎𝑡(ϕ

𝑡−1
𝐻𝑦𝑏𝑟𝑖𝑑 1[ ], ϕ

𝑡−1
𝐻𝑦𝑏𝑟𝑖𝑑 [2], ϕ

𝑡−1
𝐻𝑦𝑏𝑟𝑖𝑑 [3])
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where is the weight for the Bayesian component at time t. This model has as freeω
𝑡

parameters: ⍺, and one weight parameter per trial, whose prior distributions areβ ω

⍺~Uniform(0,1), ~Uniform(0,10) and ~Uniform(0,1).β ω
𝑡

Model evaluation: We approximated the per-subject posterior distributions of parameters

of our models using the package JAGS (Just Another Gibbs Sampler; Plummer, 2003)

implemented in R code. JAGS uses Markov Chain Monte Carlo to obtain dependent samples

from the posterior distribution. For our three models we used four independent chains with 500

samples each, and a burn-in period of 300 samples (samples that were discarded as they likely

did not reflect the true distribution). A thinning of 2 was used (i.e., values were taken every 2

samples of the chain) to reduce autocorrelation within chains. Convergence was assessed

using the standard potential scale reduction factor (Gelman and Rubin, 1992) and by visual𝑅

inspection.

Logarithm of the marginal likelihood (LML): As a metric for model comparison we used

the LML. The marginal likelihood (ML), also known as Bayesian evidence, corresponds to the

denominator in Bayes rule. It is a measure of how a model explains the current data set and can

also be used to compute other model comparison metrics like Bayes factors. For a given model

, it is described by:𝑀
𝑖

.𝑝 𝑦|𝑀
𝑖( ) = ∫ 𝑝(𝑦|θ, 𝑀

𝑖
)𝑝(θ|𝑀

𝑖
)𝑑θ

This integral is usually intractable and has to be approximated numerically. To do so, we

used a method known as bridge sampling (Gronau et al., 2017a, 2017b) which was

implemented by the R package ‘bridgesampling’ and the posterior samples obtained from JAGS

(for details, see Gronau et al., 2017a, 2017b).
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Absolute goodness of fit: In addition to computing the LML, which allows us to compare

models among themselves, we wanted to see how well they described the data in the absolute

sense, that is, compared to a theoretical (near) upper boundary for any probabilistic model, at

least given particular assumptions about exchangeability. This approximate upper limit is

represented by the negative entropy (Shannon, 1948; Shen & Ma 2016; Grassberger, 1988,

2003) and is given by:

,− 𝐻 𝑝(𝐷|𝑀
𝑡𝑟𝑢𝑒

)( ) =
𝐷
∑ 𝑝 𝑀

𝑡𝑟𝑢𝑒( )𝑙𝑜𝑔 𝑝 𝑀
𝑡𝑟𝑢𝑒( ) 

where represents the probability distribution of the data given the true model.𝑝 𝐷|𝑀
𝑡𝑟𝑢𝑒( ) 

The negative entropy is a non-positive quantity and intuitively represents how much we can

know about the data from the true generative model. An estimator of the negative entropy that

has small error even with few data points is given by Grassberger (1988, 2003; see also Shen &

Ma, 2016). For our experiments, this estimator is given by:

− 𝐻
^

𝑝(𝐷|𝑀
𝑡𝑟𝑢𝑒

)( ) =
𝑖=1

𝐶

∑ 𝑁
𝑖
(𝐺

𝑁
𝑖

− 1
𝑁

𝑖
𝐾

𝑖
1[ ]𝐺

𝐾
𝑖
1[ ] + 𝐾

𝑖
2[ ]𝐺

𝐾
𝑖
2[ ] + 𝐾

𝑖
3[ ]𝐺

𝐾
𝑖
3[ ] ( ),

with , 𝐾
𝑖
[1] + 𝐾

𝑖

[2]
+ 𝐾

𝑖
[3] = 𝑁

𝑖

are defined by:𝐺
1
, 𝐺

2
, …

,𝐺
1

=  − γ − 𝑙𝑜𝑔 2 

,𝐺
2

=  2 − γ − 𝑙𝑜𝑔 2 

,𝐺
2𝑛+1

=  𝐺
2𝑛

,𝐺
2𝑛+2

=  𝐺
2𝑛

+ 2
2𝑛+1      (𝑛≥1)

Thus,
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𝑛 = 2

𝐺
2𝑛

=− γ − 𝑙𝑜𝑔 2 + 2
1  + 3

2 ... 2
2𝑛+1

         𝑛 = 1

represents partitions of the data, e.g., experimental conditions, which in our case𝐶

equals the number of unique pairs of start and target locations times the number of states in the

grid. Therefore, was not the same in all the experimental groups. In Experiment 1, the number𝐶

of states in the grid was 81. The number of start and target pairs was five for the Single group

and eight for the Multiple group. Therefore, = 405 and = 648 for the Single and Multiple𝐶 𝐶

groups, respectively. In Experiment 2, the number of grid states was 81 for both groups. The

number of unique pairs of start and target locations was thirteen for the Single group and

sixteen for the Multiple group. Therefore, = 1053 in the Single group and = 1296 in the𝐶 𝐶

Multiple group. Ni is the total number of responses in the partition i of the data. Ki
[1] is the number

of responses to key 1 in the i partition of the data, Ki
[2] the number of responses to key 2 in the i

partition of the data and Ki
[3] the number of responses to key 3 in the i partition of the data.

Importantly, this estimator assumes that the distribution of the data given the true model is

stationary, which is not necessarily the case of our task as participants' responses can change

due to learning. However, given that subjects´ performance stabilized relatively quickly as we

can see in Figure 2 and 5, we considered it would be a reasonable approximation to an upper

boundary of the models´ performance.

The negative entropy can be compared with the negative cross-entropy, which intuitively

represents how much we can know about the data from an imperfect model (our models). The

negative cross entropy is given by:
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,− 𝐻(𝑝(𝐷|𝑀
𝑡𝑟𝑢𝑒

), 𝑝(𝐷|𝑀
𝑖
)) =

𝐷
∑ 𝑝(𝐷|𝑀

𝑡𝑟𝑢𝑒
)𝑙𝑜𝑔 𝑝 𝑀

𝑖( ) 

where represents the probability distribution of the data given the proposed model .𝑝(𝐷|𝑀
𝑖
) 𝑀

𝑖

The negative cross-entropy is also a non-positive value. An estimator of the negative cross

entropy is the logarithm of the likelihood function evaluated at the maximum likelihood estimates

of the parameters (Shen & Ma, 2016). In order to obtain this quantity, we used the set of

posterior samples that provided the maximum value of this function. In order to provide a simple

visualization of the absolute goodness of fit, we computed the proportion of the explainable

variability in the data that was explained by the models:

,𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =  
𝐻(𝑝(𝐷|𝑀

𝑡𝑟𝑢𝑒
),𝑝(𝐷|𝑀

𝑖
)) + 𝑙𝑜𝑔 𝑝 𝐷|𝑀

𝑟𝑎𝑛𝑑( )  

𝐻 𝑝(𝐷|𝑀
𝑡𝑟𝑢𝑒

)( ) + 𝑙𝑜𝑔 𝑝 𝐷|𝑀
𝑟𝑎𝑛𝑑( )  

is the logarithm of the likelihood of the data given a model that assumes all𝑙𝑜𝑔 𝑝 𝐷|𝑀
𝑟𝑎𝑛𝑑( )  

responses are equally likely and represents a lower boundary for all models. In the numerator,

we have what is explained by a proposed model (as compared to the lower boundary), relative

to what can be explained (difference between the upper and lower boundary), which is in the

denominator.

Group model comparison: In addition to comparing the models among themselves at the

individual level, we performed group model comparison following Stephen et al. (2009).

Following this paper, the probabilities (q1, q2, q3) of our models in the population follow a Dirichlet

distribution:

,(𝑞
1
, 𝑞

2
, 𝑞

3
)~𝐷𝑖𝑟([α

1
, α

2
, α

3
])

the parameters can be estimated by iterating the following algorithm provided byα = [α
1
, α

2
, α

3
]

the authors and that we implemented in R code:

α = [1, 1, 1]

𝑈𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒:
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𝑢
𝑛𝑘

= 𝑒𝑥𝑝 (𝑙𝑜𝑔 𝑝 𝑦|𝑀
𝑛𝑘( ) +  ψ α

𝑘( ) +   ψ
𝑘
∑ α

𝑘( )  )

β
𝑘

=
𝑛
∑

𝑢
𝑛𝑘

𝑘
∑𝑢

𝑛𝑘

α = α
0

+ β

,𝑒𝑛𝑑

where k is the number of tested models, n the number of subjects and the digammaψ

function. Importantly, this algorithm only requires that we provide the log marginal likelihoods

from each model which we had already computed before for individual model comparison. In

order to avoid extremely big numbers from , which returned in R, we used the logarithm of𝑢
𝑛𝑘

∞

the marginal likelihood with base 100. We iterated the algorithm 103 times to provide reliable

estimates of . The new parameters of the Dirichlet distribution can be used to compute theα

probabilities [r1, r3, r3] that a randomly selected subject follows any of the tested models:

, with𝑟
1
, 𝑟

2
, 𝑟

3[ ] =
α

1

τ ,
α

2

τ ,
α

2

τ
⎡⎢⎣

⎤⎥⎦
τ =

𝑖=1

3

∑ α
𝑖

Finally, we computed the probability that a given model k is more likely than the others in

the population, i.e., the exceedance probability :φ
𝑘

,∀𝑗∈{1, 2, 3 | 𝑗≠𝑘)

,φ
𝑗

= 𝑝(𝑞
𝑗

> 𝑞
𝑘
|α)

by the Law of Total Probability:

φ
𝑗

=
0

∞

∫ 𝑝 𝑞
𝑗

> 𝑞
𝑘
|𝑞

𝑗
, α( )𝑝 𝑞

𝑗
|α( ) 𝑑𝑞

𝑗
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This integral can be approximated numerically by the method provided in Soch and

Allefeld (2016) implemented in Matlab code.

Parameter recovery: We verified that parameters from our models could be recovered. In

order to do so, we generated data from each of them using 100 random samples of their

parameter space; then, we performed maximum likelihood estimation using Bayesian Adaptive

Direct Search (Acerbi and Ma, 2017) to attempt to recover the parameters generating the data.

Finally, we plotted the simulated versus the fitted parameters and computed the Pearson

correlation between them. In order to reduce the complexity of the hybrid model, we fitted two

weights toward the MB component, one for training trials and one for generalization trials. As

can be observed in Figure S5, most of the parameters from the models can be recovered

reasonably well, with the exception of the inverse temperature β. One of the reasons this

parameter can be difficult to recover is because there might be systematic biases in the data

that are considered as noise, e.g., preference for a particular key (Wilson and Collins, 2019).

Modeling these biases is one way to improve the recovery of β. We did not perform further

reparametrization of the models as we did not have any particular prediction about the behavior

of β.

Model recovery: In order to verify that the models were identifiable, we simulated 100

data sets from each of the models using random samples of the parameter space. Then fitted

those data sets with all the models. In Figure S6 we showed the confusion matrix with the

proportion of times that each model was able to recover the data generated by the other models

the best according to the Bayesian Information Criterion (Schwarz, 1978). In general, all the

models were able to recover their own data better than the other models above 90% of the

times.
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Supplementary material

Figure S1: Inter-key-intervals for the first seven key presses.

Figure S2: Model-based weight in the Hybrid model for Experiment 2.
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Figure S3: Explicit test of Experiment 4.

Figure S4: Proportion of arrivals in the generalization phase for participants that score 3

or less than 3 in the explicit test of Experiment 4.
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Figure S5: Results of parameter recovery of the Model-free, Model-based and Hybrid

models. On the x axis is the simulated parameter and on the y axis the recovered parameter.

The subscripts indicate the model. = learning rate, =inverse temperature, = model-basedα β ω
1

weight for training trials, = model-based weight for generalization trials. Red lines representω
2

the identity, the black dashed line is the fit of a linear model to the data and r represents the

Pearson correlation.
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Figure S6: Confusion matrix with the model recovery results. Numbers represent the

proportion of times that the model in the Y axis recovered the data generated by the model on

the X axis the best according to BIC.
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