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Abstract

Recent work has shown the fundamental role that cognitive strategies play in visuomotor adaptation. Although algorithmic strat-
egies, such as mental rotation, are flexible and generalizable, they are computationally demanding. To avoid this computational
cost, people can instead rely on memory retrieval of previously successful visuomotor solutions. However, such a strategy is
likely subject to stimulus-response associations and rely heavily on working memory. In a series of five experiments, we sought
to estimate the constraints in terms of capacity and precision of working memory retrieval for visuomotor adaptation. This was
accomplished by leveraging different variations of visuomotor item-recognition and visuomotor rotation tasks where we associ-
ated unique rotations with specific targets in the workspace and manipulated the set size (i.e., number of rotation-target associa-
tions). Notably, from experiment 1 to 4, we found key signatures of working memory retrieval and not mental rotation. In
particular, participants were less accurate and slower for larger set sizes and less recent items. Using a Bayesian latent-mixture
model, we found that such decrease in performance was the result of increasing guessing behavior and less precise memories.
In addition, we estimated that participants’ working memory capacity was limited to two to five items, after which guessing
increasingly dominated performance. Finally, in experiment 5, we showed how the constraints observed across experiments 1 to
4 can be overcome when relying on long-term memory retrieval. Our results point to the opportunity of studying other sources
of memories where visuomotor solutions can be stored (e.g., episodic memories) to achieve successful adaptation.

NEW & NOTEWORTHY We show that humans can adapt to feedback perturbations in different variations of the visuomotor rota-
tion task by retrieving the successful solutions from working memory. In addition, using a Bayesian latent-mixture model, we
reveal that guessing and low-precision memories are both responsible for the decrease in participants’ performance as the num-
ber of solutions to memorize increases. These constraints can be overcome by relying on long-term memory retrieval resulting
from extended practice with the visuomotor solutions.

Bayesian methods; explicit strategies; motor adaptation; working memory

INTRODUCTION

Adapting motor output in response to unexpected sensory
feedback or changing environmental demands is an essen-
tial process for skillful motor execution (1–3). Although this
process of sensorimotor adaptation was originally thought to
be the result of a low-order, implicit process (4–7), in recent
years it has become clear that higher-order cognitive strat-
egies play a considerable role (8–10). In fact, implicit adapta-
tion processes appear to be incapable of overcoming
perturbations in a number of situations (11–14), and the use
of cognitive strategies is necessary to improve performance
(15). Despite the mounting evidence for the importance of

strategies in sensorimotor adaptation, we currently know
very little about the underlying cognitive processes that sup-
port them.

In a prior study, we found evidence that people can use (at
least) two broad classes of strategies in a visuomotor rotation
task: an algorithmic strategy that involves the mental simula-
tion of different aiming solutions to overcome the rotation and
a retrieval strategy that can “cache” previously successful aim-
ing solutions (16). Algorithmic strategies, operationalized as a
form of mental rotation (17), can be flexible and generalizable
(16, 18) but come at a computational cost. In particular, reac-
tion times (RTs) linearly increase with the rotation magnitude
(16, 19), indicative of the higher computational demands when
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the strategy is performed for longer—similar to the depth
of tree search in planning. Indeed, people have a tendency
to avoid situations that require greater mental rotation
(20).

Alternatively, participants could forgo the computational
cost of an algorithmic strategy by attempting to retrieve a
previously successful aiming solution from a short-term
memory cache (21, 22). In effect, participants could construct
a stimulus-response look-up table between a target location
and its corresponding aiming solution. Compared with algo-
rithmic strategies, this greatly reduces the time it takes to
implement the strategy and reduces movement variance
around the solution (16). However, retrieval strategies are
likely subject to capacity constraints of short-term memory:
participants may be able to cache strategies when task com-
plexity (set size) is low, but this approach may break down as
complexity increases, based on studies of working memory
capacity outside themotor domain (23–26).

Potential constraints of memory capacity for retrieval
strategies could significantly limit their usefulness for visuo-
motor adaptation over the long term. Previous studies have
shown that strategy implementation improves with training,
in terms of speed and accuracy of execution (15, 16, 27).
However, it remains an open question whether this is due to
greater efficiency in the algorithmic computations for visuo-
motor mental rotation or whether it reflects a shift toward
cached solutions being retrieved from memory (28). In clas-
sic Shepard-like mental rotation tasks, improvements in per-
formance are thought to be the result of item-based memory
retrieval for familiar stimuli rather than improvement in the
algorithmic computations themselves (29–31). These find-
ings are consistent with the instance theory of automatiza-
tion of skills where early in learning tasks are performed
using computationally demanding algorithmic processes but
slowly give way to less demanding retrieval-based memory
processes for familiar stimulus-response associations (28).
Indeed, we have found that participants readily switch from
an algorithmic strategy to a retrieval strategy over the course
of training; however, this was only observed for conditions
involving a few training targets in the workspace, suggesting
that memory capacity limitations may constrain strategy
selection and, ultimately, their efficacy for visuomotor adap-
tation (16).

Here, in a series of studies, we sought to determine if re-
trieval strategies for visuomotor adaptation are subject to
constraints of working memory, in terms of capacity and
precision. Although previous studies have addressed
memory retrieval processes in visuomotor tasks (17), and
more recently in visuomotor rotation experiments (16),
they have remained agnostic to situations where visuomo-
tor solutions are experienced a single, or few, time(s). Such
scenarios are a key component of human experience and
have been shown to guide decision-making in a wide vari-
ety of settings (32–35).

To address this question, we made use of the visuomotor
rotation task, which has not only served as a model paradigm
for studying adaptation (36, 37) but is also ideally suited to
study cognitive strategies since the solution is expressible in
the relevant dimension of the task (38). We combine this adap-
tation task with classic experimental approaches, such as item-
recognition (17, 39), probed recall (40), and computational

models, to study visuospatial working memory (41–43).
Through this set of experiments, we find that retrieval strat-
egies are constrained to a range of two to five items, consistent
with the findings of visuospatial working memory but can be
overcome via long-term memory following substantial repeti-
tion. These findings suggest that retrieval strategies may be
useful for visuomotor adaptation over the long term.

MATERIALS AND METHODS

Participants

Seventy-three right-handed undergraduate students (34
male, 37 female, 1 nonbinary, and 1 preferred not to say;
mean age ¼ 20, SD ¼ 1.2) from Princeton University were
recruited through the psychology subject pool. Sample
sizes were based on previous studies on visuomotor adap-
tation where the number of subjects per condition typi-
cally ranges from 10 to 20 participants per condition. A
post hoc power analysis with a desired statistical power of
85% revealed that the estimated sample size for our experi-
ments would be 15 participants for experiment 1, 7 partici-
pants for experiment 2, 12 participants for experiment 3,
and 12 participants for experiment 4. The experiments
were approved by the institutional review board (IRB), and
all participants provided written informed consent before
performing the experiment.

Apparatus and Task Design

Participants performed horizontal, center-out movements
holding a digital pen over a Wacom tablet. The movements
were recorded at a sampling rate of 60 Hz in a 43.18-cm,
1,024� 768, LCD Dell monitor running onWindows 7. Visual
feedback of the hand was occluded by the monitor, which
was mounted 25 cm above the tablet. On every trial, the par-
ticipants attempted to find the monitor’s center (d ¼ 5 mm).
They were aided by a white ring that either expanded or con-
tracted with the radial distance of the participant’s hand
from the center. When the hand was 6mm from the center, a
red circular cursor (d ¼ 4 mm) appeared at the current hand
position—the start position. After holding the start position
for 1 s, a circular target (d ¼ 7 mm) appeared along a blue
ring (d ¼ 70 mm). The participants were instructed to make
ballistic center-out movements as fast and accurately as pos-
sible (16, 17) such as to slice through the blue ring, with the
ultimate goal of hitting the target with the cursor. To achieve
the latter, each experiment had varying requirements that
will be described later. After leaving the start position, visual
feedback of the cursor was removed. If the movement dura-
tion between leaving the start position and crossing the blue
ring exceeded 0.6 s, the participants received an auditory
warning (“too slow”). When the participants’ hand exceeded
the blue ring radius, the cursor would show up along the
ring. If it appeared on top of the target—a hit—the partici-
pants would hear a pleasant sound (“ding”); otherwise, they
would hear an unpleasant sound (“buzz”)—a miss. The cur-
sor feedback was delayed 0.5 s to reduce the possible role of
implicit adaptation (44) in the experiments. The cursor end
point feedback remained on the screen for 0.5 s, after which
participants would attempt to find the center to begin the
next trial. Every experiment consisted of a series of blocks
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separated by a pause, where the message “Wait for experi-
menter’s instructions” would appear and participants would
be told what to do in the next block. All experiments were
adapted such that they did not exceed 1 h.

Experiment 1: Visuomotor Item-Recognition

In this experiment (n ¼ 15), we sought to establish that
participants could use a retrieval strategy to solve a visuomo-
tor rotation without using a visuomotor mental rotation
strategy. Here, we embedded a visuomotor rotation task in
the context of a “classic” working-memory item-recognition
task (17, 45). The experiment unfolded over a series of encod-
ing and retrieval phases. In the encoding phase, the partici-
pants first observed a sequence of white targets displayed
one at a time along the blue ring and were asked to memo-
rize them (Fig. 1A). Each target remained on the screen for
0.8 s and was separated from the next one by 0.15 s. The
stimuli presentation and the time interval between them
was the same as in the study by Pellizzer and Georgopoulos
(17). In addition, Oberauer et al. (25) presented an ample col-
lection of findings in working-memory research pointing out
that there are no further improvements in accuracy for pre-
sentation durations beyond 50–100ms. The angular location
of the targets over the ring was randomly sampled without
replacement out of 24 possible locations ranging from 0� to
345� in steps of 15�. After 0.2 s of the sequence presentation,
the retrieval phase began. In this phase, one target was
selected randomly from the sequence and displayed in green
to the participants (“cued” target). The participants were
instructed to perform a reaching movement to the location
of the target that appeared immediately after it in the
sequence (“subsequent” target). We manipulated two inde-
pendent variables: the sequence length, which ranged from
two to five targets, and the angular separation between the
cued and subsequent target, which ranged from �90� to 90�

in steps of 15� and excluding 0�, giving a total of 12 values.
Importantly, the cursor end point position was rotated in the
opposite direction and with the same magnitude as the
angular separation between the cued and subsequent target
(Fig. 1A). Therefore, if the participants correctly reached the

position of the subsequent target, they would hit the cued
target with the cursor—in effect, a visuomotor rotation task.
A crucial prediction from this experiment was that if partici-
pants were performing memory retrieval, their RTs would
increase with the sequence length, indicative of memory
scanning (45), but not with the rotation magnitude, indica-
tive of mental rotation (16).

Tomake sure the participants understood the experiment,
they underwent a series of preparation blocks where they
first learned to find the center of the tablet andmake straight
reaching movements to the targets (48 trials: 24 trials with
feedback and 24 trials without feedback); then, they were
exposed to target sequences with all lengths and rotation
magnitudes to get familiarity with the task (48 trials). Then,
in the actual experiment, each sequence length and rotation
magnitude combination was tested three times (144 trials).
At the end, participants underwent a washout block (24 tri-
als) where they were instructed to reach directly to targets
while not receiving end point feedback. The experiment had
a total of 264 trials.

Experiment 2: Extended Visuomotor Item-Recognition

Since guessing behavior in experiment 1 consistently
remained below 50% across all sequence lengths, we hypothe-
sized that participants’ working-memory capacity exceeded
the demands imposed by the task. Therefore, in experiment 2
(n ¼ 13), we extended the design of experiment 1 to include
sequences up to length 10. We were particularly interested in
whether the guessing behavior and memory precision would
continue to increase and decrease, respectively, and the point
where they would level off, if at all. Considering that in experi-
ment 1, RTs did not change with the rotationmagnitude—sug-
gesting no mental rotation—we relaxed the control of this
variable for experiment 2. We only made sure that all rotation
magnitudes tested in experiment 1were repeated at least three
times across the experiment and that they added up to 0 to
prevent a bias for one side of the rotation. Each sequence
length from 2 to 10 was tested 15 times. In total, there were 252
trials divided into learning to find the center andmake reach-
ing movements (48 trials: 24 trials with feedback and 24 trials
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Figure 1. A: visuomotor item-recognition task from experiments 1 and 2. A sequence of targets appeared, one at a time, on a circle followed by the pre-
sentation of one target from that sequence. The participants had to reach the location of the subsequent target on the sequence. B: visuomotor rotation
recall task from experiment 3. A sequence of pairs of trials was shown. In the first trial of each pair, the participants reached to the colored target and
observed the rotation associated with it (observation). In the next trial, they attempted to counteract the rotation (adaptation). In the memory test, one col-
ored target from the ones in the sequence was shown (target of pair 3 is shown as an example) and participants had to counteract the rotation associ-
ated with it. C: visuomotor rotation recall from experiment 4. In this experiment each rotation value was associated with a different target location
instead of colors as in experiment 3. Target of pair 1 is shown as an example of the memory test.
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without feedback), practice with the target sequences (45 tri-
als; each length tested three times), experiment (135 trials),
and washout (24 trials). Apart from these specifications,
everything else remained as in experiment 1.

Experiment 3: Visuomotor Rotation Recall (Color)

Admittedly, the sequential design of experiments 1 and 2
departs from what is typically required in a visuomotor rota-
tion task. Therefore, in experiment 3 (n ¼ 15), we adopted a
more conventional trial-pair design (16) to test the working-
memory constraints of retrieval strategies. In this design, the
participants were first exposed to an observation trial fol-
lowed by an adaptation trial. On the observation trial, partic-
ipants were instructed to reach directly to a presented target
and to observe the cursor rotation. On the adaptation trial,
they were tasked with counteracting the rotation (Fig. 1B).
These trial-pairs were presented in sequences ranging from
one to five (5 targets was the estimated capacity above which
guessing began to dominate performance in experiment 2).
After the sequence presentation, there was a memory test in
which a target from the sequence was selected and partici-
pants had to retrieve the aiming solution for that target to
successfully counteract the rotation. In order for participants
to easily recognize which type of trial they were in, a text
near the center would indicate “Observation,” “Adaptation,”
or “Memory test” in the corresponding trial.

The target location was fixed at 90� for all trials, and target
colors were used to indicate the different rotation magni-
tudes. We chose color to differentiate between rotation mag-
nitudes, as it is a feature that has been widely investigated in
studies of working memory (46). For every new sequence,
the target colors were randomly sampled without replace-
ment out of five possible options: black (rgb ¼ [0,0,0]), or-
ange (rgb ¼ [255,53,51]), green (rgb ¼ [0,255,0]), yellow (rgb ¼
[255,255,0]), and purple (rgb ¼ [178,102,255]). Similarly, the
rotation magnitudes associated with each target color were
randomly sampled without replacement out of five possible
magnitudes: 30�, 45�, 60�, 75�, and 90�, with randomized
signs. The random selection of the target colors and their
associated rotation values rendered the learning from the
previous trials irrelevant for the current trial. Therefore, per-
formance depended solely on a single learning episode.
Importantly, although participants could experience five
possible rotation magnitudes during the sequence of pairs,
only three were evaluated in the memory test: ±30, ±60, and
±90. The reason for this was to maintain the duration of the
experiment similar to experiment 1 and 2 while keeping the
experiment counterbalanced. Based on previous studies (16),
we believed that any effect of the rotationmagnitude on per-
formance, e.g., RTs increasing due to mental rotation, would
show up with the tested magnitudes. There were a total of
446 trials divided into learning to find the center and mak-
ing reachingmovements (24 trials: 8 trials with feedback and
16 trials without feedback), practice with the trial-pair design
(16 trials), practice with the sequence of pairs (15 trials), the
experiment (375 trials), and washout (16 trials).

Experiment 4: Visuomotor Rotation Recall (Location)

To provide further evidence of the capacity limitations of re-
trieval strategies in standard visuomotor rotation paradigms,

in experiment 4 (n ¼ 15), we varied the design of experiment 3
such that instead of colors, each rotation magnitude was asso-
ciated with a different target location. For every new sequence,
the target locations of each pair were randomly sampled with-
out replacement out of eight possible values ranging from 0�

to 315� in steps of 45�. Here, the target color was green through-
out the experiment. Similar to experiment 3, the random selec-
tion of the target locations and their associated rotation values
aimed to prevent the learning from the previous trials affect
the performance in the current trial. This variation would
more closely resemble previous studies of dual adaptation (47)
and pair-trial design (16). Apart from these changes, everything
else remained as in experiment 3, having a total of 446 trials.

Experiment 5: Visuomotor Rotation Recall (Long-Term
Retrieval)

In this final experiment (n¼ 15), we aimed to studywhether
the limited working-memory capacity shown particularly in
experiment 4 (around 2 elements) would be ameliorated as
memories consolidate into long-term storage. In particular,
we exposed participants to only sequences of length 5 and
where the target locations were distinct for each rotationmag-
nitude as in experiment 4. Unlike experiment 4, this time the
rotation magnitude associated with a given target location
remained the same across the experiment; however, its posi-
tion within the sequence was randomized at every new
sequence such that participants did not learn a particular
arrangement of the trial-pairs. We expected that, over trials,
participants would learn the target-rotation associations and
guessing behavior would progressively decrease, whereas
memory precision would increase. There were a total of 463
trials, which consisted of learning to find the center and mak-
ing reaching movements (24 trials: 24 trials: 8 trials with feed-
back and 16 trials without feedback), practice with the trial-
pair design (16 trials), practice with the sequence of pairs (22
trials), the experiment (385 trials: 35 sequences), and washout
(16 trials). Apart from the aforementioned changes, every-
thing else remained as in experiment 4.

Behavioral Data Analysis

All analyses were performed using the R statistical soft-
ware version 3.2.2 (48) or MATLAB version 2022a (49). The
core dependent variables in our experiments were reaction
times (RTs), target errors, unsigned errors, and adaptedmag-
nitudes. RTs were defined as the time interval between the
target presentation and participants’ departure from the
start position. Target errors were defined as the angular dis-
tance (in degrees) between the cursor and the target position.
Unsigned errors refer to the absolute value of the target
errors. Adaptedmagnitudes refer to the absolute angular dis-
tance of the hand with respect to the target. All behavioral
measures were computed at the subject level, except for the
target error distributions, where we pooled the data across
participants. Linear regression models and correlation coef-
ficients were performed using the lm and cor functions on R,
respectively. For correlations, we provide both the Pearson
and Spearman coefficients. Data points were excluded from
analysis if they corresponded to false alarms. A false alarm
refers to a trial where participants moved before the target
was presented.
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Guessing and Memory Precision Analysis

To disentangle the cognitive processes that gave rise to
participants’ performance in our tasks, we adopted a
Bayesian latent-mixture approach (43, 50, 51). In particular,
we assumed that errors in the tasks could be generated by
participants sampling from two sources: a memory distribu-
tion, represented by a VonMises distribution, and a guessing
distribution, represented by a uniform distribution—a com-
mon approach in studies of spatial working memory (41).
Given that, with the exception of experiment 1, the number
of data points per subject for each sequence length ranged
between 3 and 15, we opted to infer the mixture model pa-
rameters in all experiments at the group level to obtain more
reliable estimates. The graphical representation of the mix-
ture model for all experiments is shown in Fig. 3C. Here,
nodes represent the variables in our model and arrows repre-
sent how they influence each other. Shaded nodes are
observed variables, whereas unshaded nodes are unknown
variables. Circular nodes indicate continuous variables,
whereas squared nodes indicate discrete variables. The
plates represent independent replications of the graph struc-
ture. On the right side of the graph in Fig. 3C, we show the
model specifications, including prior distributions.

In practice, we implemented the model using the follow-
ing procedure: for every sequence length, the densities from
a Von Mises distribution and a uniform distribution were
obtained for every target error. For numerical stability, we
used the logarithm of the densities. An indicator random
variable z for every error and sequence length selected which
of the two distributions was assumed to have generated the
target error using their (log) densities and the “ones trick”

described in the study by Lee and Wagenmakers (43).
Briefly, the “ones trick” allows us to reliably sample from a
target distribution—in our case, the mixture distribution—
using simpler distributions, given that our target distribution
is not available in the inference library.

The indicator random variable z was sampled from a
Bernoulli distribution with parameter / for every sequence
length. This parameter represents the proportion of errors
believed to be generated by a uniform distribution, i.e., the
guessing rate. The VonMises distribution has amean param-
eter, l, and a concentration parameter, κ, for each sequence
length. The latter reflects the dispersion in the distribution
and in our context represents the memory precision. To
study serial position effects in our experiments, we varied
the structure of this model such that the parameters were
estimated per position in the sequence (instead of per
sequence length).

In addition to the latent mixture model, we also perform
inference on a model that assumes no guessing, i.e., a simple
Von Mises distribution. We compared the predictive accu-
racy of the models using leave-one-out cross-validation
implemented in R code based on the study by Vehtari et al.
(52, 53).

The posterior distribution of the model parameters was
approximated using the software package JAGS (54) imple-
mented in R code. We used three independent chains with
1.2 � 105 samples each. A burn-in period (initial samples that
were discarded) of 2� 103 samples and a thinning of 2 (one ev-
ery two samples was selected) were used to encourage conver-
gence and reduce autocorrelation between samples. This gave
a total of 1.5 � 104 posterior samples for each group parame-
ter. The additional JAGS module jags-vonmises (available on

A B C D

E F G H

Figure 2. Behavioral results of experiment 1 (purple) and experiment 2 (blue). A and E: per-subject mean of adapted magnitude for each rotation magni-
tude. The dashed lines indicate performance when perfectly counteracting the rotation. B and F: per-subject mean of unsigned errors for each sequence
length. C and G: per-subject median of reaction times for each sequence length. D and H: per-subject median of reaction times for each rotation magni-
tude. Black solid lines on reaction times (RTs) plots show the linear models fitted to the data. Error bars represent the standard deviation with respect to
the mean.
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https://github.com/yeagle/jags-vonmises) was used to com-
pute Von Mises (log) density values. Convergence of the
chains was assessed using the standard potential scale reduc-
tion statistic R̂ (55). Values of R̂ < 1.1 generally indicate that
the chains have converged. All the R̂ values in our models
were below this threshold.

Given that parameter inference was implemented at the
group level, and due to the large number of posterior sam-
ples, we performed the statistical analyses in the modeling
sections using a subsampling procedure (56). In particular,
we drew 1,000 samples of size b without replacement from
the posterior samples of the group parameters, where b was
equal to the number of participants for the corresponding
experiment. We computed the statistic of interest for each of
the 1,000 samples and generated a distribution of its value
given all samples. We report the 95% confidence interval (CI)
based on this distribution. For example, in experiment 1, to
test whether there was a correlation between the guessing
rate h and the sequence length, we sampled 15 values of h
without replacement from the posterior distribution of each
sequence length (2–5 targets), giving a total of 60 data points,
over which we performed the correlation test. We performed
this step 1,000 times and reported the 95% CI of the correla-
tion coefficient based on the resulting distribution.

RESULTS

Experiment 1

Behavioral results.
The goal of our first experiment was to verify that people can
leverage retrieval strategies, instead of an algorithmic strat-
egy (i.e., mental rotation), to successfully solve a visuomotor
rotation task and to estimate the precision of retrieval strat-
egies. To test this, participants (n¼ 15) performed a visuomo-
tor item-recognition task (17, 45), where they first observed a
sequence of targets, ranging from two to five targets (set
size), that were displayed one at a time along a ring (Fig. 1A;
see MATERIALS AND METHODS for details). Then, a cued target
from the sequence was presented, and the goal was to reach
to the location of the subsequent target in the sequence.
Within the item-recognition task, we embedded a visuomo-
tor rotation task by manipulating the angular rotation
between the end point cursor feedback and the end of the
reach. Importantly, the angular difference between the cued
and subsequent target were varied to simulate a visuomotor
rotation, which ranged from�90� to 90�. This way, if partici-
pants correctly reached to the subsequent target in the
sequence, they would also hit the cued target with the cur-
sor. We hypothesized that if participants were using re-
trieval-based strategies, then RTs to the subsequent targets
would not vary with the angular difference between the cued
and subsequent targets (i.e., visuomotor rotation magni-
tude). After a given sequence was experienced, the relation-
ship between the target locations and rotations was
randomized for the next sequence.

Overall, participants successfully reached the subsequent
target across the different rotation magnitudes, as reflected
in a significant positive correlation between the adapted
magnitude and the rotation magnitude [rPearson(178) ¼ 0.96,
P < 0.001; rSpearman(178) ¼ 0.96, P < 0.001; Fig. 2A].

However, accuracy decreased with the sequence length, as
suggested by larger unsigned errors for longer sequences
[rPearson(58) ¼ 0.74, P < 0.001; rPearson(58) ¼ 0.79, P < 0.001;
Fig. 2B], providing preliminary evidence that the precision
of retrieval-based strategies is subject to set size constraints.

A key prediction of this study was that RTs would increase
with the sequence length (17) but not the rotationmagnitude
(16) if the participants were performing memory retrieval
instead of mental rotation. Indeed, we found that sequence
length [b¼ 0.14, P< 0.001, R2 ¼ 0.35, F(1,58)¼ 32.18; Fig. 2C],
but not rotation magnitude [b ¼ 0.001, P ¼ 0.15, R2 ¼ 0.02, F
(1,88) ¼ 2.02; Fig. 2D], significantly predicted the median of
participants’ RTs in a linear regression analysis. In addition,
a linear regression analysis performed at the individual level
over RTs also revealed that the coefficient for sequence
length was significantly greater than zero [t(14) ¼ 6.17, P <
0.001; Supplemental Fig. S1A].

As a key property of working memory retrieval, we looked
for serial position effects on performance and found that
unsigned errors were indeed smaller [rPearson(58) ¼ �0.57,
P < 0.001; rSpearman(58) ¼ �0.55, P < 0.001; Supplemental
Fig. S2A] and RTs lower [rPearson(58) ¼ �0.40, P ¼ 0.001;
rSpearman(58) ¼ �0.50, P < 0.001; Supplemental Fig. S2E] for
more recent targets in the sequence (i.e., a recency effect).

Modeling results.
Following previous work on spatial working memory (41,
42), we analyzed the target error distributions in our task
(Fig. 3A) using a Bayesian latent-mixture model to better
characterize the precision of retrieval strategies (43, 50, 51;
Fig. 3C). In particular, we assumed that target errors were
generated by either a memory distribution, represented by a
Von Mises distribution, or a guessing distribution, repre-
sented by a uniform distribution. The VonMises distribution
is similar to a normal distribution but adapted to circular
data given the structure of our reaching tasks. We imple-
mented this model at the group level to have enough data
points to generate reliable estimates of the distribution of
the parameters. For our analyses, we focused on the group
guessing rate parameter (h) and the group memory precision
parameter (κ) of the distribution (see MATERIALS AND METHODS

for details).
As expected from previous studies (42), we found that the

guessing rate increased with the sequence length (rPearson ¼
0.98, 95% CI [0.97, 0.98]; rSpearman ¼ 0.96, 95% CI [0.96,
0.96]; Fig. 3D), whereas the precision of the memory distri-
bution decreased (rPearson ¼ �0.89, 95% CI [�0.86, �0.92];
rSpearman ¼ �0.89, 95% CI [�0.86, �0.92]; Fig. 3E). These
modeling results are consistent with the decrease in accu-
racy observed in participants’ unsigned errors (Fig. 2B) and
the pooled target error distributions (Fig. 3A). Furthermore,
we were interested in whether the guessing rate and the pre-
cision of the memory distribution would vary depending on
the position of the target in the sequence (i.e., serial position
effects). Indeed we found a negative correlation between the
target position in the sequence and the guessing rate h
(rPearson ¼ �0.95, 95% CI [�0.94, �0.97]; rSpearman ¼ �0.94,
95% CI [�0.92, �0.96]; Fig. 3F), indicating that across
sequence lengths, participants guessed less for more recent
targets. Furthermore, we found a positive correlation
between the memory precision κ and the position of the
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target, such that there was higher precision for more recent
items (rPearson ¼ 0.87, 95% CI [0.82, 0.90]; rSpearman ¼ 0.85,
95% CI [0.79, 0.90]; Fig. 3G).

Together, the findings of experiment 1 provide evidence
that people can use a retrieval strategy, and not mental rota-
tion, to successfully solve a visuomotor rotation task. In
addition, we showed that retrieval is subject to capacity limi-
tations, as reflected in larger errors, higher guessing rates,
lower memory precision, and higher reaction times for longer
sequences. Furthermore, we found serial position effects—a
signature of working memory retrieval—where people had
smaller errors, were faster, guessed less, and hadmore precise
memories for more recent targets in the sequence. Notably,
even for sequences of length 5, guessing represented a rela-
tively low proportion of the trials (posterior mean of h for
length 5 ¼ 0.27), which suggests that the memory capacity of
participants may extend beyond five targets. In experiment 2,
we explore this limit by exposing participants to longer
sequences (larger set size).

Experiment 2

Behavioral results.
The goal of experiment 2 was to explore the limits of visuo-
motor retrieval beyond the sequence lengths tested in
experiment 1. Specifically, we sought to replicate our findings
for sequences up to five targets and to assess whether the
trends in our relevant variables (unsigned errors, RTs, guess-
ing rate, and memory precision) would extend to sequences
of up to 10 targets.

As in experiment 1, we found a significant positive correla-
tion between the adapted magnitude and the rotation

magnitude [rPearson(154) ¼ 0.76, P < 0.001; rSpearman(154) ¼
0.78, P< 0.001; Fig. 2E], confirming that participants success-
fully reached the subsequent target in the sequence, and
therefore counteracted the rotation. In addition, we found
that participants’ accuracy decreased when they faced more
targets, as reflected in larger unsigned errors for longer
sequences [rPearson(115)¼ 0.74, P< 0.001; rSpearman(115)¼ 0.75,
P < 0.001; Fig. 2F]. Interestingly, when we compared the
unsigned errors between experiment 1 and experiment 2 over
the same sequence lengths (2–5 targets), we found that partic-
ipants from experiment 2 performed significantly worse. This
difference was tested using 2 � 4 repeated-measures ANOVA,
having the experiment number and sequence length as fac-
tors and revealing a significant main effect of the experiment
number [F(1,104)¼ 16.31, P< 0.001, g2¼ 0.08].

Similar to experiment 1, RTs linearly increased with
sequence length [b ¼ 0.02, P ¼ 0.006, R2 ¼ 0.06, F(1,115) ¼
7.68; Fig. 2G] but not rotation magnitude [b ¼ 0.006, P ¼
0.68, R2 ¼ 0.002, F(1,76) ¼ 0.16; Fig. 2H], supporting a mem-
ory retrieval strategy instead of mental rotation. A linear
regression analysis over RTs performed at the individual
level also revealed that the coefficient for sequence length
was significantly greater than zero [t(12) ¼ 2.97, P < 0.05;
Supplemental Fig. S1A]. In addition, we found that partici-
pants in experiment 2 had significantly higher RTs than par-
ticipants in experiment 1 over the same sequence lengths (2–
5 targets). This difference was assessed using 2 � 4 repeated-
measures ANOVA, including experiment number and
sequence length as the factors and finding a significant main
effect of the experiment number [F(1,104) ¼ 5.41, P ¼ 0.02,
g2¼ 0.035].

Experiment 1L = 3L = 2 L = 4 L = 5

L = 2 L = 5L = 4L = 3 L = 6 L = 7 L = 8 L = 9 L = 10

180-180 0 180-180 0 180-180 0 180-180 0

180-180 0 180-180 0 180-180 0 180-180 0 180-180 0 180-180 0 180-180 0 180-180 0 180-180 0

Experiment 2

C

A

B

FD E G

Figure 3. Analysis of target error distribution using a Bayesian latent-mixture model. A and B: pooled target error distributions for each sequence length
of experiment 1 and experiment 2. C: graphical representation of the Bayesian latent-mixture model of target errors (see MATERIALS AND METHODS for
details). D: posterior distribution of the group guessing rate parameter, ɸ, for each sequence length. The red dashed line indicates ɸ ¼ 0.5. E: posterior
distribution of the group memory precision parameter, κ, for each sequence length. F: posterior distribution of the group guessing rate parameter, ɸ, for
the last (t � 1), second to last (t � 2), and so on, targets across sequence lengths. G: same as (F) but for the group memory precision parameter, κ. Error
bars represent the standard deviation with respect to the mean.
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Corroborating the serial position effects of experiment 1,
we found that participants had smaller unsigned errors
[rPearson(112) ¼ �0.56, P < 0.001; rSpearman(112) ¼ �0.56, P <
0.001; Supplemental Fig. S2B] and lower RTs [rPearson(112) ¼
�0.31, P < 0.001; rSpearman(112) ¼ �0.28, P ¼ 0.002;
Supplemental Fig. S2F] for more recent targets in the
sequence. We can observe a similar serial position effect in
the target error distributions (Supplemental Fig. S3).

Modeling results.
Following the logic of experiment 1, we analyzed the source of
the target errors (Fig. 3B) using a Bayesian latent-mixture
model. Again, we found that the guessing rate h increased
with the sequence length (rPearson ¼ 0.96, 95% CI [0.95, 0.96];
rSpearman ¼ 0.96, 95% CI [0.95, 0.97]; Fig. 3D); this time follow-
ing a sigmoidal-like shape. Furthermore, we found that guess-
ing became predominant (occurring >50% of the trials) for
sequences above length five, which was estimated by fitting a
sigmoidal function (f) to the posterior means (blue dots) of
Fig. 3D and later computing f�1(0.5), which estimated 5.6 tar-
gets (Supplemental Fig. S4A). Similarly, based on the function
(f), we found that the asymptote of the guessing rate (h) was at
0.74. Regarding memory precision (κ), we found a negative
correlation with the sequence length (rPearson ¼ �0.70, 95% CI
[�0.61,�0.77]; rSpearman ¼ �0.70, [�0.62,�0.77]; Fig. 3E), con-
firming the decay in memory precision with the sequence
length of experiment 1. In addition, by visual inspection, we
corroborated the behavioral differences between experiment 1
and experiment 2, showing that participants from experiment
2 performed worse over the same sequence lengths: they
guessedmore and had less precisememories in target sequen-
ces with two to five targets (Fig. 3,D–G).

Finally, we performed our mixture analysis to identify
serial position effects, finding a negative correlation
between the guessing rate h and the position of the target
in the sequence (rPearson ¼ �0.81, 95% CI [�0.77, �0.85];
rSpearman ¼ �0.77, [�0.72, �0.82]; Fig. 3F), indicating that
people guess less for the most recent items across all
sequences (recency effect) as in experiment 1. In addition,
we found a positive correlation between memory precision
κ and the sequence length (rPearson ¼ 0.68, 95% CI [0.61,
0.74]; rSpearman ¼ 0.64, 95% CI [0.57, 0.71]; Fig. 3G), sug-
gesting that they had more precise memories for more
recent items.

In summary, the results of experiment 2 corroborated the
main findings of experiment 1 regarding the memory con-
straints of visuomotor retrieval strategies. Participants had
larger errors, had higher RTs, guessed more, and had less
precise memories for longer sequences. In addition, we con-
firmed a recency effect in unsigned errors, RTs, guessing
rate, and the memory precision. As in experiment 1, we
found no evidence that the participants were performing
mental rotation. Interestingly, however, participants in
experiment 2 performed significantly worse than partici-
pants in experiment 1 over the same sequence lengths
according to behavioral and model-based measures, which
may be a result of generally higher task demands for longer
sequences. Finally, we found that the asymptote of guessing
was 74% of the trials and that guessing began to dominate
performance (occurring >50% of the trials) for sequences
above five targets.

The goal of experiments 1 and 2was to embed a visuomotor
rotation into the item-recognition task of Pellizzer and
Georgopoulos (17) to verify the ability of retrieval strategies to
solve a visuomotor rotation task. Admittedly, the designs of
experiments 1 and 2 depart from what is typically required in
a visuomotor rotation task. Nonetheless, they serve as a
bridge to study working-memory constraints for a retrieval
strategy in a more standard visuomotor rotation task, which
we systematically build toward in the following set of studies.

Experiment 3

Behavioral results.
The goal of this experiment was to estimate the working
memory capacity and precision of a retrieval strategy in a task
that is a step closer to a standard visuomotor rotation task. In
this experiment, we implemented a trial-pair design (16; Fig.
1B) where participants (n ¼ 15) were first asked to reach to-
ward a single target location, always at 90�, and observe a cur-
sor rotation. In the following trial, they were tasked with
counteracting the rotation, therefore making the cursor hit
the target. Participants were exposed to sequences of such
trial-pairs with lengths ranging from one to five pairs (i.e., set
size). Importantly, each pair was associated with a unique
rotation that was indicated with a distinctive target color—a
common dimension studied in spatial working memory. The
rotations could take the values of ±30, ±60, or ±90. At the end
of the sequence presentation, there was a memory test where
one of the colored targets from the observed sequence was
presented and participants had to counteract the rotation
associated with it. Following each memory test, the associa-
tions between the color of the targets and rotationmagnitudes
were changed (see MATERIALS AND METHODS for details).

Similar to the visuomotor item-recognition studies, we
found that in thememory test, participants successfully coun-
teracted the rotations, as observed in a positive correlation
between the adapted magnitude and the rotation magnitude
[rPearson(43) ¼ 0.82, P < 0.001; rSpearman(43) ¼ 0.83, P < 0.001;
Fig. 4A]. However, participants had larger unsigned errors
for longer sequences [rPearson(73) ¼ 0.64, P < 0.001;
rSpearman(73)¼ 0.64, P< 0.001; Fig. 4B]. As in the earlier item-
recognition tasks, we found that RTs linearly increased
with the sequence length [b ¼ 0.22, P < 0.001, R2 ¼ 0.25,
F(1,73) ¼ 24.5; Fig. 4C] but not the rotation magnitude [b ¼
�0.08, P ¼ 0.43, R2 ¼ 0.01, F(1,43) ¼ 0.61; Fig. 4D], indicat-
ing that participants did not perform mental rotation but
memory retrieval. We performed a linear regression analy-
sis at the individual level, which also revealed that the
coefficient for sequence length was significantly greater
than zero [t(14) ¼ 5.33, P < 0.001; Supplemental Fig. S1A].
In addition, we found serial position effects where partici-
pants had smaller errors [rPearson(73) ¼ �0.57, P < 0.001;
rSpearman(73) ¼ �0.56, P < 0.001; Supplemental Fig. S2C] and
lower RTs [rPearson(73) ¼ �0.25, P ¼ 0.02; rSpearman(73) ¼
�0.32, P ¼ 0.004; Supplemental Fig. S2G] for more recent
targets in the sequence.

Modeling results.
We separated the source of the target errors (Fig. 5A) using
the same Bayesian latent-mixture analysis as in experiment 1
and experiment 2. Similarly, we found that the guessing rate
h increased for longer sequences (rPearson ¼ 0.94, 95% CI
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[0.92, 0.95]; rSpearman ¼ 0.95, [0.93, 0.96]; Fig. 5B), whereas
the memory precision κ decreased (rPearson ¼ �0.85, 95% CI
[�0.80, �0.89]; rSpearman ¼ �0.88, [�0.84, �0.91]; Fig. 5C). In
addition, by fitting a linear model, f, to the posterior means
of Fig. 5B, we found that guessing began to dominate per-
formance (>50% of trials) for sequences above four targets—
specifically, f�1(0.5) ¼ 4.16 (Supplemental Fig. S4B).
Furthermore, we found serial position effects, where partici-
pants guessed less (rPearson ¼ �0.85, 95% CI [�0.81, �0.88];
rSpearman ¼ �0.83, [�0.78, �0.88]; Fig. 5D) and had more pre-
cise memories (rPearson ¼ 0.78, 95% CI [0.73, 0.83]; rSpearman ¼
0.76, [0.69, 0.83]; Supplemental Fig. S5A) for more recent tar-
gets in the sequence.

Overall, the results from experiment 3 corroborate the
main results in the visuomotor item-recognition tasks
from experiment 1 and experiment 2 but in a task design
that is a step closer to a standard visuomotor rotation
task. In summary, we found that memory retrieval is con-
strained by the capacity of working memory, as shown in
larger unsigned errors, higher RTs, more guessing, and
lower memory precision for longer sequences. As in the
visuomotor item-recognition task, we found no evidence
that participants were performing mental rotation.
Furthermore, we observed serial position effects both in
our behavioral and model-based measures. Notably,
in this experiment, guessing becomes predominant for
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Figure 4. Behavioral results of experiment 3 (green) and experiment 4 (orange). A and E: per-subject mean of adapted magnitude for each rotation mag-
nitude. The dashed lines indicate performance when perfectly counteracting the rotation. B and F: per-subject mean of unsigned errors for each
sequence length. C and G: per-subject median of reaction times for each sequence length. D and H: per-subject median of reaction times for each rota-
tion magnitude. Black solid lines show the linear models fitted to the data. Error bars represent the standard deviation with respect to the mean.
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Figure 5. Modeling results of experiment 3 (green) and experiment 4 (orange). A and E: pooled target error distributions for each sequence length. B
and F: posterior distribution of the group guessing rate parameter, ɸ, for each sequence length. The red dashed line indicates ɸ¼ 0.5. C andG: posterior
distribution of the group memory precision parameter, κ, for each sequence length. D and H: posterior distribution of the group guessing rate, ɸ, for the
last (t� 1), second to last (t� 2), and so on, targets across sequence lengths. Error bars represent the standard deviation with respect to the mean.
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sequence lengths above four targets, a capacity similar to
the item-recognition task of experiment 2.

In the following studies, we focused on memory retrieval
associated with the target location instead of target color, a
design that is more common in visuomotor rotation tasks.

Experiment 4

Behavioral results.
The goal of this experiment was to provide further evidence
of the constraints of working memory retrieval in visuomo-
tor rotation tasks; this time, bymaking participants associate
rotation magnitudes with distinct target locations instead of
colors. Associating rotation magnitudes with distinct target
location has been used before on dual adaptation experi-
ments (47) as well as in trial-pair tasks (16). The target loca-
tions for every trial were randomly sampled without
replacement out of eight possible values ranging from 0� to
315� in steps of 45�. We used the same rotation magnitudes
as in experiment 3.

As expected from our previous experiments, participants
were able to successfully counteract the rotation, indicated
by a significantly positive correlation between the adapted
magnitude and the rotation magnitude [rPearson(43) ¼ 0.79,
P < 0.001; rSpearman(43) ¼ 0.81, P < 0.001; Fig. 4E]. In addi-
tion, they had larger unsigned errors for longer sequence
lengths [rPearson(73) ¼ 0.48, P < 0.001; rSpearman(73) ¼ 0.44,
P < 0.001; Fig. 4F]. Interestingly, participants in this experi-
ment performed significantly worse than participants in
experiment 3 (i.e., color cues), as indicated by a 2 � 5
repeated-measures ANOVA over unsigned errors, including
experiment number and sequence length as the factors and
finding a significant main effect of the experiment number
[F(1,140)¼ 15.9, P< 0.001, g2¼ 0.06].

In addition, we found that RTs linearly increased with the
sequence length [b ¼ 0.06, P ¼ 0.04, R2 ¼ 0.05, F(1,73) ¼
4.28; Fig. 4G] but not rotation magnitude [b ¼ 0.05, P ¼ 0.33,
R2 ¼ 0.02, F(1,43) ¼ 0.95; Fig. 4H], supporting memory re-
trieval over mental rotation. To corroborate these findings,
we performed a linear regression analysis over RTs at the
individual level, which also revealed that the coefficient for
sequence length was significantly greater than zero [t(12) ¼
2.49, P< 0.05; Supplemental Fig. S1A].

Finally, we also found serial position effects where partici-
pants had smaller errors [rPearson(73) ¼ �0.39, P < 0.001;
rSpearman(73) ¼ �0.39, P < 0.001; Supplemental Fig. S2D] and
marginally lower RTs [rPearson(73) ¼ �0.22, P ¼ 0.05;
rSpearman(73) ¼ �0.20, P ¼ 0.07; Supplemental Fig. S2H] for
more recent targets in the sequence.

Modeling results.
When performing the Bayesian latent-mixture analysis to
the target error distributions (Fig. 5E), we found that the
guessing rate was higher (rPearson ¼ 0.73, 95% CI [0.69, 0.77];
rSpearman ¼ 0.64, [0.56, 0.71]; Fig. 5F), whereas the memory
precision was lower for longer sequences (rPearson ¼ �0.66,
95% CI [�0.57, �0.75]; rSpearman ¼ �0.67, [�0.58, �0.76]; Fig.
5G); both results are consistent with our previous experi-
ments. To know when guessing behavior began to dominate
participants’ performance (occurring >50% of the trials),
we fitted a polynomial function, f, to the posterior means
of Fig. 5F. Supporting the behavioral differences between

experiment 3 and experiment 4, we found that the guessing
rate was greater than 50% of the trials starting from
sequences of length 2 [f�1(0.5) ¼ 1.98; Supplemental Fig.
S4C]; a noticeable reduction in capacity compared with
experiment 3, where this value was around four targets.

As in our previous experiments, there was a recency effect
in the guessing rate h and memory precision κ, where partici-
pants guessed less (rPearson ¼ �0.71, 95% CI [�0.64, �0.78];
rSpearman ¼ �0.66, [�0.58, �0.74]; Fig. 5H) and had, weakly,
more precise memories (rPearson ¼ 0.21, 95% CI [0.08, 0.33];
rSpearman ¼ 0.15, [0.05, 0.24]; Supplemental Fig. S5B) for more
recent items, although primarily for themost recent item.

Overall, in experiment 4, we were able to corroborate the
main findings from our previous studies where participants’
performance decreased for longer sequences. However, com-
pared with experiment 3, where people associated rotation
magnitudes to colors, in this experiment, participants per-
formed significantly worse, displaying a limited working
memory capacity where guessing dominated performance
starting from sequences of two targets. This finding would
place a relatively low upper bound on how useful retrieval
strategies can be for counteracting a visuomotor perturba-
tion. Most visuomotor adaptation studies require partici-
pants to train at more target locations; however, the
relationship between the target location and the rotation
typically does not change from trial-to-trial, as in our trial-
pair task. As such, participants experience many repetitions
of the same stimulus-response association over the course of
training, which would provide ample opportunity to store
these associations for later retrieval according to the
instance theory of automatization (28). In our final study, we
addressed if these severe limitations in working memory
capacity can be overcome, namely, by relying on a different
memory storage: long-termmemory.

Experiment 5

Behavioral results.
The goal of this final experiment was to test whether the re-
trieval strategies can overcome the limitations of working
memory through repetition and, as such, long-termmemory.
To test this, participants (n ¼ 15) performed the trial-pair
task as in experiment 4; however, here they were exposed to
sequences of five pairs, which would exceed our estimates of
working memory capacity. Importantly, in contrast with
experiment 4, the rotation magnitudes associated with the
target locations remained the same throughout the experi-
ment, but the order of the rotation-target pairs was random-
ized. This design allowed participants to experience the
rotation-target associations multiple times, therefore,
increasing the likelihood that they would be stored in long-
termmemory.

As in our previous experiments, we found that participants’
performance remained highly accurate across rotationmagni-
tudes [rPearson(43) ¼ 0.96, P < 0.001; rSpearman(43) ¼ 0.94, P <
0.001; Fig. 6A]. In addition, we observed that unsigned errors
[rPearson(103) ¼ �0.39, P < 0.001; rSpearman(103) ¼ �0.47, P <
0.001; Fig. 6B] and RTs [rPearson(103) ¼ �0.33, P < 0.001;
rSpearman(103) ¼ �0.26, P ¼ 0.007; Supplemental Fig. S6A]
decreased over time, as expected, indicating that memory re-
trieval improves with practice. Finally, we found that RTs did
not change with the rotation magnitude [b ¼ 0.06, P ¼ 0.53,
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R2 ¼ 0.008, F(1,43) ¼ 0.38; Supplemental Fig. S6B], ruling out
mental rotation.

Modeling results.
Corroborating our behavioral findings, we found that the
guessing rate h decreased over time (rPearson ¼ �0.81, 95% CI
[�0.78, �0.84]; rSpearman ¼ �0.79, [�0.74, �0.84]; Fig. 6C),
reaching a posterior mean of 12% of guessing by the end of
the experiment. Notably, this value is lower than the guess-
ing rate for sequences of a single target (i.e., the smallest set
size) in experiment 4 (posterior mean of h for sequence
length 1¼ 19%). Similarly, the memory precision κ increased
over time (rPearson ¼ 0.70, 95% CI [0.62, 0.77]; rSpearman ¼ 0.71,
[0.63, 0.77]; Fig. 6D), reaching a posterior mean of κ ¼ 26 by
the end of the experiment, which is higher than the precision
of target sequences of length 1 in experiment 4 (posterior
mean of κ for sequence length 1¼ 13).

In summary, the results of experiment 5 showed that the
capacity limitations shown in experiment 4 can be overcome
over time, at a point where performance is better than in the
shortest sequence relying onworkingmemory.

Model Comparison

To validate the results from the Bayesian latent-mixture
model, we compared its performance with a model that
assumed that target errors had a single source, namely, the
memory (VonMises) distribution. We found that qualitatively
and quantitatively—using leave-one-out cross validation (52,
53)—the Bayesian latent-mixture model outperforms the sin-
gle-source model in all experiments and sequence lengths
(Supplemental Fig. S7).

DISCUSSION

Summary

Through a series of studies, we showed that participants
can effectively use retrieval from memory as a strategy for
visuomotor adaptation. From experiment 1 to experiment 4,
we found key signatures of working memory retrieval,
namely, lower accuracy and higher RTs as the number of tar-
gets in the training set increases (set size; 25, 39, 45, 57, 58).
In addition, we found a recency effect where participants

were more accurate and had lower RTs for more recent
items, also a seminal finding in working memory studies (25,
58). These behavioral results were supported by group
model-based metrics, which revealed that participants were
guessing more and had less precise memories for longer
sequences (i.e., larger set size), as well as less guessing and
more precise memories for more recent items—a recency
effect. Experiment 5 revealed that these apparent working
memory limitations could be overcome with repetition, sug-
gesting that retrieval strategies can also rely on long-term
memory. This later finding is consistent with the instance-
based theory of automatization and may provide clues as to
how a strategy could lead to skill development (28).

Capacity Limitations of Retrieval Strategies

From our model-based analysis, we found that guessing
behavior began to dominate participants’ performance
(more than 50% of trials) in the visuomotor item-recognition
task for training sets beyond five targets, and similarly for
the visuomotor rotation recall task with color cues, for sets
beyond four targets. Both of these performance thresholds
are similar to the capacity limitations documented in previ-
ous studies (59, 60). Interestingly, we found that for experi-
ment 4, where visuomotor rotation recall was based on
location cues, guessing exceeded 50% of trials starting with
sequences of two targets, which was a striking reduction in
performance. Although previous work has shown that both
colors and locations can serve as contextual cues when adap-
tation is primarily driven by an explicit strategy (61, 62), dif-
ferences in their effectiveness in cueing a rotation in our
experiments might be due to the fact that, although both
spatial locations and colors are continuous variables, colors
are typically associated with well-known categories (red,
green, purple, etc.), requiring minimal or no learning. On the
contrary, target locations were not explicitly linked with
well-known categories in space; therefore, participants prob-
ably had to memorize the target locations as well as the rota-
tion magnitude associated with them. Future experiments
could test this hypothesis, for example, by providing clock
“marks,” around the ring, indicating the locations where the
target could appear. This way, participants can use a well-
known reference frame to remember the target locations
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Figure 6. Behavioral and modeling results of experiments 5. A: per-subject mean of adapted magnitude for each rotation magnitude. The dashed lines
indicate performance when perfectly counteracting the rotation. B: per-subject mean of unsigned errors over time-bins. C: posterior distribution of the
group guessing rate parameter, ɸ, over time bins. The red dashed line indicates ɸ¼ 0.5.D: posterior distribution of the group memory precision parame-
ter, κ, over time bins. Error bars represent the standard deviation with respect to the mean, except for (B) where error bars represent the interquartile
range around the median due to non-normality of the data.
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(e.g., target at 6 linked with 90� rotation). We would expect
that in this scenario, performance would be similar to
experiment 3.

In addition, it is worth noticing that we found significant
differences in performance between the two studies in the
visuomotor item-recognition task. Specifically, in experi-
ment 2, participants showed overall lower performance, both
in behavioral and model-based metrics, as compared with
participants in experiment 1 over the same set sizes. Since
participants in experiment 2 were additionally presented
with sets greater than 5 and up to 10 targets, we credit this
effect to a higher cognitive load imposed by the average set
size in the experiment. This decrease in performance has
been reported before in working-memory studies, although
usually when participants perform a distracting task either
from the same or a different domain (63).

It has been widely debated whether human workingmem-
ory is better described by models that assume a fixed-slot or
a continuous resource capacity (42, 64). Whereas the original
form of the fixed-slot models would assume a shift from re-
trieval to guessing after memory capacity is surpassed, the
continuous resource models predict, instead, a decline in the
memory precision as the number of items to be remembered
increases. Using the Bayesian latent-mixture model, we
allowed for the incorporation of both of these assumptions.
In particular, target errors were modeled as a combination of
memory (Von Mises) distribution and a guessing (uniform)
distribution; at the same time, we allow the memory preci-
sion to be variable across set sizes. Interestingly, we found
qualitative and quantitative evidence (Supplemental Fig. S7)
that the decrease in participants’ performance was the result
of a combination of both increased guessing and decreased
memory precision, which is consistent with both frame-
works. However, we did not find abrupt changes on partici-
pants’ performance, particularly in experiment 2, where
target sequences far exceeded typical capacity thresholds,
which would be predicted by an all-or-none, fixed-slot model
(41). Instead, unsigned errors, guessing rate, and memory
precision seem to describe continuous functions, results that
better align with the predictions of continuous resource
models (64, 65). Further work would be necessary to assess
whether other instances of continuous resource models, e.g.,
that assume a different precision per trial (64), can provide a
better description of this data set without the assumption of
a guessing distribution.

Finally, we should note that we view these working-mem-
ory capacity limitations as arising from limits in visuospatial
working memory, given the remarkable similarity in our
findings with studies of visual short-term memory in
domains outside of motor control (23–26, 42). This perhaps
is not surprising since the reaching movements in our task
were ballistic and visual feedback of the cursor was delayed
to prevent implicit recalibration. Although it is possible that
proprioception or somatosensory information could be
leveraged to recall a successful reach location with a specific
target location (66, 67), the most salient features of the task
were visuospatial—target and planned aiming location.
Retrieval strategies could differentially rely on visuospatial
and somatosensory “motor working memory,” which appear
to be dissociable (68), depending on the nature of the task.
However, the absence of aftereffects during the washout

phase in all our experiments suggests that performance was
primarily based on explicit processes (Supplemental Fig. S8).

Retrieval versus Algorithmic Strategies

In recent years, experimental work on visuomotor adapta-
tion has revealed that people can deploy at least two kinds of
cognitive strategies in response to feedback perturbations.
Algorithmic strategies, which allow for the discovery of gen-
eralizable aiming solutions, are computationally demanding.
On the contrary, memory retrieval allows for a fast and com-
putationally effective way to recover known aiming solu-
tions but is limited in generalization and capacity. Previous
work has shown that participants can switch from algorith-
mic to retrieval strategies as the experimental session pro-
gresses, which is reflected in a decrease in RTs over time
(16). This transition is consistent with a process of automati-
zation andmemory consolidation characteristic of the devel-
opment of a skill (28).

Although retrieval strategies can convey an advantage in
computational cost reflected in a reduction in RTs, this bene-
fit is likely to become more evident as the aiming solutions
are consolidated into long-term memory due to repetition.
Indeed, in the study byMcDougle and Taylor (16), RTs differ-
ences between participants performing algorithmic and re-
trieval strategies are accentuated as the aiming solutions are
repeated over the experimental session. This enhancement
in computational efficiency is analogous to the one ofmental
arithmetic (22), where the solutions for common operations
are readily retrieved from memory (e.g., the result of 5 times
5), whereas the solutions for less common, or novel, opera-
tions are more slowly performed algorithmically (e.g., the
result of 23 times 11). We observed a similar improvement in
computational efficiency in experiment 5, where RTs,
unsigned errors, and guessing decreased, whereas memory
precision increased, with more repetitions of the aiming sol-
utions. However, this improvement was most likely driven
by a transition from working memory to long-term retrieval
and not from algorithmic computations to long-term re-
trieval, as we found no evidence of mental rotation in the
experiment (Supplemental Fig. S6B).

However, when the aiming solutions are presented a sin-
gle time as in experiments 1–4, the computational efficiency
gained through repetition is not attainable. In this scenario,
where retrieval relies instead on working memory, the com-
putational cost can increase as more solutions have to be
stored. Evidence for this idea is found in previous work (17,
39, 45) as well as in the present studies, where RTs linearly
increase with the set size, which has been proposed to be the
consequence of a scanning process over the items in mem-
ory (39, 45, 69). Notably, this linear increase in RT with set
size in memory-based retrieval tasks mirrors the linear
increase in RT with rotation magnitude in mental rotation
tasks. However, there is substantial evidence suggesting that
they are the result of fundamentally different psychological
and neural operations (16, 17, 70).

Whether memory scanning is computationally cheaper
than mental rotation is an open question. From the set of
studies we have presented, experiment 4 has the most com-
parable design to the McDougle and Taylor (16) trial-pair
rotation task, where the linear relation between RTs and
rotation magnitudes was documented. Specifically, both
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designs vary the target location on which the aiming solu-
tion is tested. In our experiment 4, participants reached RTs
medians of around 1 s for the longest target sequences,
which is around the RT values for the smallest rotations in
McDougle and Taylor (16), and where the largest rotations
reached values of around 1.3 s. This would suggest that re-
trieval, even when it occurs from working memory, could be
computationally cheaper than mental rotation. However, an
experiment that evaluated these comparable designs could
provide empirical evidence of the computational efficiency
of each strategy.

Automatization of a Skill

It is well known that practice generally leads to task
improvements in terms of speed and accuracy (71). One
potential explanation for this improvement is the increased
efficiency of algorithmic processes (e.g., that mental rotation
is performed faster and more accurately over time) and
reflected in transfer effects to new stimuli. Crucially, to the
authors’ knowledge, there is mixed evidence that such trans-
fer occurs (30, 31). However, a recent study by Provost et al.
(72) found out that the speed of mental rotation can indeed
improve, and therefore be reflected in transfer, but only
when participants are trained with a large stimulus set. On
the contrary, whenMcDougle and Taylor (16) trained partici-
pants to counteract 12 different rotations associated with dif-
ferent targets, which favors the use of mental rotation over
memory retrieval due to capacity limitations, their RTs only
gently decreased with training, suggesting that participants
continued using mental rotation with the same efficiency
throughout the task. Although further research is needed to
understand whether algorithmic processes can improve with
practice, this route of improvement was unlikely to occur in
our studies, particularly in experiment 5, as we found no evi-
dence of mental rotation in the first place.

However, it has been proposed that, when developing a
new skill, people start by relying on algorithmic strategies
but subsequently transition to perform memory retrieval of
already known solutions (28)—with this transition entailing
a reduction in the computational cost. Although this process
likely underlies a wide variety of human skills like mental
arithmetic, we found evidence that long-term retrieval does
not need to be preceded by algorithmic performance.
Instead, it can result from consolidating task solutions that
had already been stored in working memory. We can think,
for example, that in a pool game, a player can temporarily
store the shooting locations that were verbally or visually
conveyed by a more experienced player without having to
compute them themselves. These solutions, if successful,
can be consolidated for future use into long-term storage.
Such a strategy can prove successful in the short-term, only
relying on algorithmic performance in the absence of tempo-
rarily stored solutions, such as in the presence of novel stim-
uli (73).

However, when the task at hand has no explicit incentive
to use retrieval right from the beginning (as in our studies), a
more natural transition in the development of a skill could
be starting with algorithmic processes, followed by working
memory retrieval and long-term retrieval if the solutions are
consolidated (74). The inability to transition from algorith-
mic to retrieval strategies when working memory capacity is

exceeded (16) highlights the relevance for the study of the
latter to understand the successful acquisition of visuomotor
skills.

Further insight about the role of working memory in
motor learning can be gained from studies on value-based
decision making (33). For example, previous research has
suggested that working memory can support decisions by
holding information about rewards (75) or transfer knowl-
edge across tasks (76). Similarly, when the stimulus set that
participants have to learn from is small, decisions seem to be
dominated by working memory information, whereas for
larger sets, incremental learning prevails (32). Therefore, it is
conceivable that working memory has a similar relation with
error-driven processes in motor learning. For example, in
motor adaptation tasks where the number of rotations to be
learned is small, working memory can serve as a temporary
storage for those solutions, whereas for longer set sizes,
error-driven processesmight dominate.

Overall, this work opens future avenues of research where
other memories, such as episodic memories (34, 35, 77), can
be the subject of study as potential sources of visuomotor
solutions for adaptation.
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