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Abstract Motor learning is often viewed as a unitary process that operates outside of conscious 
awareness. This perspective has led to the development of sophisticated models designed to 
elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader 
perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. 
Furthermore, we propose a theoretical framework for motor learning that consists of three funda-
mental processes: reasoning, the process of understanding action–outcome relationships; refine-
ment, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and 
retrieval, the process of inferring the context and recalling a control policy. We anticipate that this 
‘3R’ framework for understanding how complex movements are learned will open exciting avenues 
for future research at the intersection between cognition and action.

Motor skill acquisition involves both implicit learning and 
explicit strategy
Leaf through any neuroscience textbook and motor learning – the process of refining our move-
ments through feedback and practice – will be described as an implicit, non-declarative phenomenon 
(Figure 1). Indeed, this description matches the phenomenology of skilled performers who ‘let the 
body do the thinking’ when executing a highly practiced motor skill (Jackson, 1996). In the domain 
of cognitive psychology, this perspective can be traced back to the foundational studies with patient 
H.M., an individual who had undergone bilateral medial temporal lobectomy and subsequently devel-
oped severe anterograde amnesia (Scoville and Milner, 1957). Despite having no conscious recollec-
tion of performing a mirror drawing task, H.M. exhibited striking improvements over multiple sessions 
of practice (Milner, 1962). This monumental finding helped inspire taxonomies of human learning 
and memory that place motor skill learning (sometimes called ‘procedural learning’) squarely in the 
domain of implicit memory (Squire, 2004; Squire and Zola-Morgan, 1991).
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This simplified and intuitive perspective overlooks a crucial distinction: while H.M. may lack explicit 
memory of what he had learned between sessions, he may well have employed explicit strategies 
for learning within each session (Krakauer et al., 2019; McDougle et al., 2022b). Recent research 
provides compelling evidence in support of this hypothesis, showing not only the operation of 
multiple learning processes during mirror drawing, but also that the explicit component of learning 
is the primary impetus for improvement (Wilterson and Taylor, 2021). More generally, it would be 
difficult to find a motor skill that does not require the application of explicit strategies (Stanley and 
Krakauer, 2013).

The contribution of strategy use in simple sensorimotor 
learning tasks
How do we draw the boundaries between implicit learning and explicit strategy? Implicit learning 
plays a crucial role in ensuring well-calibrated movements, a process that operates automatically and 
outside of conscious awareness (Mazzoni and Krakauer, 2006; Morehead et al., 2017; Tsay et al., 
2020). Conversely, explicit strategies are movement plans that are reportable (explicit) and/or inten-
tional (strategic) (Deng et al., 2022; Hegele and Heuer, 2010; Kim et al., 2021; Lillicrap et al., 2013; 
Maresch et al., 2021; McDougle et al., 2016b; Morehead and Orban de Xivry, 2021; Seidler and 
Carson, 2017; Sülzenbrück and Heuer, 2009; Taylor et al., 2014; Werner et al., 2015). Specifically, 
a reportable motor plan is one that participants can articulate, whereas an intentional motor plan is 
cognitively demanding and executed deliberately. For the purposes of this article, we will often use 
the terms ‘explicit’ and ‘strategy’ interchangeably (see Box 1).

Various forms of feedback and sensorimotor experiences, such as motor error, reward, and move-
ment repetition, have traditionally been thought to induce implicit learning (Doya, 2000; Izawa and 
Shadmehr, 2011; Pascual-Leone et al., 1993; Shadmehr et al., 2010). Moreover, these forms of 
implicit learning are believed to depend on separable neural pathways: error-based motor learning 
engages cerebellar–cortical interactions (Marr, 1969), reinforcement-based learning engages basal 
ganglia–cortical interactions (Schultz et al., 1997), and use-dependent learning (i.e., learning driven 
by simple movement repetition) modulates neural tuning curves in primary sensorimotor areas 
(Classen et al., 1998; also see Areshenkoff et al., 2023; Nick et al., 2024; Standage et al., 2023). 
In this section, we discuss studies that have challenged the view that sensorimotor learning is solely 
implicit, demonstrating that performance on a broad range of simple motor learning tasks can be 
largely driven by the deployment of an explicit strategy.

Figure 1. Classic and revised taxonomies of long-term memory. A revision of the classic taxonomy proposed by Squire and Zola, 1996 (gray lines), with 
motor skills tapping into both explicit and implicit memory (dashed red line).

https://doi.org/10.7554/eLife.91839
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Error-based motor learning
The process of correcting motor errors via sensory feedback has proven to be a useful test bed for 
characterizing the contribution of both explicit and implicit learning processes (Anguera et al., 2010; 
Benson et al., 2011; Bromberg et al., 2019; Coltman et al., 2021; de Brouwer et al., 2018; Haith 
et  al., 2015; Huberdeau et al., 2015; Kim et al., 2021; Taylor et  al., 2014). Traditionally, error-
based learning has been characterized by gradual implicit changes in movement kinematics, such 
as the heading angle of the hand in response to perturbed sensory feedback during goal-directed 
reaching tasks (e.g., Figure 2A; a rotation of visual feedback; Held and Hein, 1958; Helmholz, 1909). 
These implicit changes in reach kinematics remain robust even when the perturbed sensory feed-
back is removed, and, in fact, persist when participants are instructed to reach directly toward the 

Box 1. Taking aim toward definitions of implicit and 
explicit motor learning.

The two-pronged criteria of explicit strategy – reportability and/or intentionality – underpin 
many psychophysical methods used to measure this construct. In the aim report task (Taylor 
et al., 2014; Figure 2B), participants are asked to verbalize their intended motor plan for 
aligning a rotated cursor with a target. The difference between the location of verbal reports 
and the actual target location is a measure of reportable explicit strategy. In the ‘forced 
preparation task’ (Huberdeau et al., 2019; McDougle and Taylor, 2019), the time allowed for 
participants to prepare a movement is manipulated. The difference between trials with short 
or long preparation times provides a measure of intentional explicit strategy (Figure 2F; see 
Maresch et al., 2021 for an in-depth review).
We recognize that the two-pronged criteria of explicit strategy measurement may oversimplify 
the construct in several critical aspects. The terms 'implicit' and 'explicit' learning can have 
different definitions across different domains of learning. In statistical learning, 'implicit' 
usually denotes the process through which participants acquire through exposure/repetition 
the probabilistic structure of a task, whereas 'explicit' relates to the process where the 
structure of the task is transparently communicated to the participants (Reber, 1989). In 
sports psychology, these terms often refer to the necessity of attentional resources: implicit 
learning requires minimal attention and is resilient to dual-task interference, while explicit 
learning requires significant attentional resources, and is impacted by multi-tasking (Masters, 
1992). Given the range of definitions, future research should work toward a consensus on 
a unified definition of these processes that account for the full range of replicable empirical 
features.
The reportability and intentionality of a movement may vary throughout the time course 
of motor skill acquisition. A learner might be able to describe how they are refining their 
movements (e.g., a biker can articulate how they lean into the turn to maintain stability at 
high speeds) but cannot report the underlying reason why their actions lead to a desirable 
outcome (e.g., the biker may fail to articulate the principles of centrifugal force). Moreover, 
when a strategy is completely stored in long-term memory, participants may find themselves 
unable to verbalize or exert any deliberate control over it, rendering it a form of implicit motor 
memory.
It is important to recognize that the extent to which strategies are reportable and/or 
intentional may exist on a continuum rather than a dichotomy. Participants might articulate a 
strategy with varying levels of confidence (Fassold et al., 2023; Hewitson et al., 2023; Yokoi 
and Weiler, 2022) or require degrees of deliberation depending on the cognitive resources 
available (Haith et al., 2015; Song and Bédard, 2015).
While explicit strategy use is commonly viewed as a singular concept, we foresee future 
research offering a clearer definition and an in-depth perspective on the various components, 
processes, and continua that underpin the construct.

https://doi.org/10.7554/eLife.91839
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Figure 2. Implicit and explicit learning processes contribute to a wide range of sensorimotor learning tasks. (A) Schematic of an error-based motor 
learning task. The 45° rotated cursor feedback (white dot) was provided throughout the movement. (B) Mean time course of hand angle (light blue 
line) during baseline, perturbed feedback, and aftereffect (no feedback) phases. Red line denotes the time course of strategy use, measured by verbal 
reports of the aiming location using a number wheel. Black line denotes the time course of implicit learning, estimated by subtracting verbal reports 
of aiming location from overall performance. Hand angle is presented relative to the target (0°). Figure adapted from Figure 2C in Taylor et al., 
2014. (C) Schematic of a mirror-reversal task. The visual cursor feedback (white dot) was reflected over the vertical axis and provided throughout the 
movement. (D) Mean time course of hand angle in a mirror reversal task. Figure adapted from Figure 10B in Wilterson and Taylor, 2021. (E) Schematic 
of a reinforcement-based motor learning task. A pleasant auditory ‘ding’ was provided when the movement passed within the reward zone (green arc); 
otherwise, an unpleasant ‘buzz’ was played. (F) Mean time course of hand angle during the reinforcement learning task. The reward zone (green zone) 
was gradually shifted, leading to learning (light blue line). Figure adapted from Figure 2A–B in van Mastrigt et al., 2023.

https://doi.org/10.7554/eLife.91839
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visual target, forgoing the use of any strategy. In essence, this form of implicit learning induces a 
kind of visuomotor illusion, where one thinks that they are moving in one direction (e.g., reaching 
straight ahead) but are actually moving in an adapted manner (e.g., reaching 20º clockwise of their 
intended movement direction). This type of mismatch, dubbed an ‘aftereffect’, is a canonical signature 
of implicit learning.

However, two key pieces of evidence highlight the fact that explicit strategies contribute signifi-
cantly to error-based motor learning. First, while participants can successfully adapt to large pertur-
bations, such as a visual rotation of 45°, aftereffects are considerably smaller (e.g., around 15–25º 
on average), consistent with the hypothesis that only a part of the observed learning is truly implicit 
(Figure 2B). Second, when people are asked to verbally indicate where they intend to aim before each 
movement, the reports reveal that a large portion of learning is driven by explicit strategies (Bond and 
Taylor, 2015; Day et al., 2016; McDougle et al., 2017). These findings elevate error-based motor 
learning from a process placed squarely in the domain of implicit memory to one that also relies on 
explicit, declarative strategies.

Beyond visuomotor rotation learning, explicit strategies have also been shown to operate in other 
error-based adaptation tasks, such as saccade adaptation (Huang et al., 2017), force-field adaptation 
(Schween et al., 2020), target-jump adaptation (Leow et al., 2024; Sadaphal et al., 2022), prism 
adaptation (Leukel et al., 2015; Prablanc et al., 2020; Redding and Wallace, 2002), and locomotor 
adaptation (Ellmers et al., 2020; Malone and Bastian, 2010; Roemmich et al., 2016). The ubiquity of 
strategy use across such diverse paradigms speaks to its central importance in sensorimotor control.

Mirror-reversal learning
The task used in the classic patient H.M. study is now recognized as one of the most compelling 
cases for strategy use (Ewert, 1930; Sekiyama et al., 2000; Stratton, 1897; Sugita, 1996; Telgen 
et  al., 2014). Recent efforts have been made to quantify the relative contribution of implicit and 
explicit components to mirror-reversal learning (Figure 2C; Hadjiosif et al., 2020; Lillicrap et al., 
2013; Wilterson and Taylor, 2021; Yang et al., 2021). Based on verbal reports about the intended 
aiming position, over 90% of learning can be attributed to explicit strategies (Figure 2D). Addition-
ally, the substantial time required for movement planning (Wilterson and Taylor, 2021), as well as 
learning impairments observed under dual-task conditions (Eversheim and Bock, 2001), all indicate 
that mirror reversal learning relies heavily on strategy use.

Multiple learning processes also contribute to reinforcement-based motor learning, the process 
of refining movements through reward and/or punishment (Galea et  al., 2015; Izawa and Shad-
mehr, 2011). In the initial work with this method, learning was assumed to occur primarily via implicit 
processes (Cashaback et al., 2019; Galea et al., 2015; Izawa and Shadmehr, 2011; Nikooyan and 
Ahmed, 2015; Uehara et al., 2019; Wu et al., 2014). However, reinforcement-based motor learning 
engages both implicit and explicit processes (Butcher and Taylor, 2018; Forano and Franklin, 
2024; Holland et al., 2018; Kunavar et al., 2023): as illustrated in Figure 2E and F, participants can 
successfully adjust their movements based on binary reinforcement feedback signaling whether their 
movements hit or missed a hidden, and gradually shifting, reward zone (van Mastrigt et al., 2023). 
Strikingly, only a small portion of the learning arises from implicit processes as indexed by the after-
effect phase when participants are instructed to forgo strategy use and reach directly to the visual 
target.

Two additional pieces of evidence emphasize the presence of reinforcement-driven sensorimotor 
strategies. First, unlike error-based sensory feedback (Block and Bastian, 2011; Ruttle et al., 2021; 
Tsay et al., 2021b), binary reinforcement does not distort the participants’ sense of hand position 
(Izawa and Shadmehr, 2011), strengthening the claim that the sensorimotor map is not implicitly 
recalibrated by reward and/or punishment. Second, learning is severely compromised when the task 
is performed concurrently with a secondary task, indicating that reinforcement-based motor learning 
is cognitively demanding (Codol et al., 2018; Holland et al., 2018). Together, these findings make a 
strong case for strategy use during reinforcement-based motor learning.

Multiple learning processes also play a role in use-dependent motor learning, the process of 
refining movements through repeated practice, independent of feedback (Figure 3A and B; Classen 
et al., 1998; Mawase et al., 2017). In reaching studies, use-dependent learning is evident as a bias 
toward a frequently performed movement direction (Figure 3C; Diedrichsen et al., 2010; Verstynen 

https://doi.org/10.7554/eLife.91839
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and Sabes, 2011). This movement bias has been assumed to be implicit and rigid, meaning it could 
not be deliberately overridden by explicit processes. However, recent findings have demonstrated 
that a large portion of use-dependent biases can be strategically reduced (Marinovic et al., 2017; 
Reuter et al., 2019; Suleiman et al., 2023; Tsay et al., 2022; Wong and Haith, 2017): as illustrated 
in Figure 3D–F, a use-dependent bias toward a frequently repeated movement direction is much 
more pronounced for faster and more impulsive movements, reflecting a ‘default’ motor plan that is 

Figure 3. A default motor plan toward a repeated movement direction can be strategically overridden. (A) Reaching set-up showing locations of 
frequent and rare probe targets. Only one of seven targets (filled blue circle) was visible on each trial. (B) Movement trajectories from a representative 
participant who exhibited straight and curved movements. The frequent target is denoted by the green circle, whereas rare targets are denoted by the 
purple, blue, turquoise, yellow, red, and magenta circles (clockwise). (C) Average inward bias measured early in movement (at peak velocity) increased 
as a function of probe distance (solid line). By contrast, the peak of the Gaussian estimated from the distribution near the probe location saturates for 
larger probe distances (dashed line). (D) Distribution of heading angles for each of the probe distances. Gray dashed line denotes the location of the 
frequently presented target, and black dashed line (0 on the x-axis) denotes the location of the probe target. The means obtained from the mixture of 
Gaussians models are provided. (E) Bias as a function of reaction time (RT) for a representative participant. Dots indicate individual reaches, with the 
thin line showing the best-fitting regression line. R denotes Pearson correlation; ***p<0.001. (F) Group-level analysis of bias as a function of RT. For each 
individual, RTs were binned into quintiles and mean bias was calculated for each quintile. These data were then averaged across the group. Error bars 
denote SEM. Figure adapted from Figure 1 in Tsay, Kim et al. (2022).

https://doi.org/10.7554/eLife.91839
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chosen based on experience repeating the same movement. Strikingly, the bias is nearly abolished 
when movement initiation is slowed down. These findings reveal that moving to a relatively rare 
target location may require strategic re-aiming to override a default motor plan directed toward the 
frequent target location. Indeed, the implicit component of use-dependent biases, which manifests 
when movement initiation is slowed down, is quite small (<5º).

Beyond the sensorimotor learning tasks outlined above, consideration of multiple processes is also 
important for understanding motor sequence learning (Krakauer et al., 2019). The serial reaction 
time (SRT) task has been widely deployed as a test of implicit learning. However, even the earliest 
studies using the SRT task demonstrated that explicit learning can play a major role in performance, 
impacting how participants represent the structure of the sequence (Cohen et al., 1990; Jiménez 
et al., 2006; Nissen and Bullemer, 1987). Moreover, even under conditions designed to minimize 
explicit learning, participants, including those with severe anterograde amnesia, can explicitly report 
sequence fragments. This explicit knowledge is, in fact, essential for significant performance improve-
ments, accounting for much of the reduction in reaction time (Moisello et  al., 2009; Reber and 
Squire, 1998; Reber and Squire, 1994).

Implicit and explicit learning exhibit contrasting properties in 
simple visuomotor tasks
What are the key properties that distinguish explicit from implicit motor learning? In visuomotor rota-
tion tasks, the two processes differ in terms of their responsiveness to task demands. Explicit strategy 
use is remarkably flexible, eliciting performance improvements that scale with the size of the rota-
tion (Figure 4A; Bond and Taylor, 2015). In contrast, implicit learning is strikingly rigid, exhibiting 
similar performance across a wide range of rotation sizes (Figure 4B; Kim et al., 2018; Marko et al., 
2012; Morehead et  al., 2017; Tsay et  al., 2021a; Wei and Körding, 2009). However, the flexi-
bility associated with strategy use makes this process highly erratic. Not only can there be abrupt, 
dramatic changes in performance, but individuals sometimes employ strategies unnecessarily, even in 
the absence of a perturbation – a tendency that leads to self-induced motor errors (Miyamoto et al., 
2020). Implicit learning can, to some extent, ‘clean up’ these self-induced errors, reinstating a more 
stable sensorimotor response.

By definition, the two processes differ in their cognitive demands: strategy use is intentional and 
deliberative, exhibiting reaction times that scale proportionally to the size of the rotation (Figure 4C; 
Fernandez-Ruiz et al., 2011; Huberdeau et al., 2015; McDougle and Taylor, 2019). Conversely, 
implicit learning is not cognitively demanding, showing similarly fast reaction times across a wide 
range of rotation sizes (Figure 4D; Hadjiosif et al., 2023; Haith et al., 2015; Leow et al., 2017; 
Morehead et al., 2017).

The two processes also differ in terms of savings and generalization. Strategy use is enhanced 
upon re-learning (i.e., savings; Figure 4E), whereas implicit learning is attenuated upon re-learning 
(Figure  4F; Avraham et  al., 2021; Hadjiosif et  al., 2023; Haith et  al., 2015; Morehead et  al., 
2015; Tsay et al., 2024). Strategy use results in broad generalization to different target locations 
(Figure 4G; McDougle et al., 2017; McDougle and Taylor, 2019; Poh et al., 2021), exhibits almost 
full generalization when the movement is performed with a different effector than that used in training 
(Bouchard and Cressman, 2021; Werner et al., 2019), and is based primarily in extrinsic coordinate 
frames (Poh and Taylor, 2019). In contrast, implicit learning exhibits narrow generalization around 
the aiming location (Figure 4H; Day et al., 2016; Krakauer et al., 2000; Morehead et al., 2017), 
minimal generalization across effectors (Poh et al., 2016), and is based in both extrinsic and intrinsic 
coordinate frames (Brayanov et al., 2012; Poh and Taylor, 2019).

The timing of feedback has asymmetric effects on these two processes: while strategy use remains 
robust even when the feedback is significantly delayed (Brudner et al., 2016; Tsay et al., 2023b), 
implicit learning is very sensitive to the timing of feedback, relying on a close temporal associa-
tion between movement initiation and feedback presentation (Kitazawa et  al., 1995; Schween 
and Hegele, 2017; Wang et al., 2022). The effect of aging also has opposite effects on these two 
processes: while strategy use is markedly impaired in older adults, implicit learning is similar or even 
enhanced in older participants (Ruitenberg et al., 2023; Tsay et al., 2023a; Vandevoorde and Orban 
de Xivry, 2019; Vandevoorde and Orban de Xivry, 2020; Wolpe et al., 2020). This is consistent 

https://doi.org/10.7554/eLife.91839
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Figure 4. Implicit and explicit learning exhibit contrasting properties in visuomotor rotation tasks. (A, B) Learning 
functions requiring strategic re-aiming scale with the size of the rotation, whereas the size of the aftereffect, 
indicative of the implicit component, does not scale. Figure adapted from Figure 7 in Bond and Taylor, 2015. 
(C, D) When learning is under explicit control, reaction times scale with the size of the rotation; this effect is not 
observed when learning is implicit. Figure adapted from Figure 2B in McDougle and Taylor, 2019 and Figure 4 in 
Morehead et al., 2017. (E, F) Re-exposure to the same rotation enhances explicit learning but attenuates implicit 
learning. Figure adapted from Figure 1A in Tsay, Schuck et al. (2022) and Figure 2D in Avraham et al., 2021. (G, 
H) Explicit learning generalizes globally over the entire workspace, whereas generalization from implicit learning 

Figure 4 continued on next page
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with the assumption that explicit strategy use relies on neural systems associated with planning and 
decision-making such as the prefrontal cortex and medial temporal lobe (Areshenkoff et al., 2023), 
regions that are most vulnerable to age-related decline (Persson et al., 2006; Wolpe et al., 2020).

The time course of learning also varies between implicit and explicit processes. Implicit learning, 
at least in the motor domain, is well characterized by a process of gradual error reduction, a concept 
that has been central in computational models (Donchin et al., 2003; Fine and Thoroughman, 2007; 
Oh and Schweighofer, 2019; Shadmehr et al., 2010; Smith et al., 2006). In contrast, despite the 
appearance of gradual error reduction in the average learning curve (Figure 5A; figure adapted from 
Cisneros et al., 2024), individual learning functions are far more idiosyncratic on explicit learning 
tasks: some individuals exhibit sudden, punctuated jumps in performance (‘moments of insight’; 
Figure 5C and D), whereas others display large variabilities (‘exploratory patterns’; Figure 5E and F; 
McDougle and Taylor, 2019; Townsend et al., 2023). As such, instead of dismissing individual differ-
ences as mere noise, acknowledging these strategic differences may deepen our understanding of the 
diverse cognitive influences on motor learning.

However, there are two key considerations that temper our claims about contrasting features of 
implicit/explicit motor learning: first, while it is tempting to treat implicit and explicit motor learning 
processes as independent (Day et al., 2016; McDougle et al., 2017; Taylor et al., 2014), recent 
evidence suggests they interact in non-trivial ways (Albert et al., 2022; ’t Hart et al., 2023; Miya-
moto et al., 2020; Therrien and Wong, 2021). For example, in traditional visuomotor rotation tasks, 
implicit learning appears to suppress strategy use (Shmuelof et al., 2012a; Vaswani et al., 2015; 
Weightman et  al., 2022). This suppression may explain why participants fail to invoke a strategy 
to nullify a residual error that may persist after implicit learning has saturated; yet, in tasks where 
implicit learning is abolished (for instance, by significantly delaying the feedback), participants often 
succeed in strategically compensating for a similarly sized perturbation (Brudner et al., 2016; Tsay 
et al., 2023b; Wong et al., 2019). In another line of work, implicit and explicit learning are hypothe-
sized to compete over a shared error signal (Albert et al., 2022). This competition may explain why 
manipulations that modulate strategy use (e.g., verbal instructions [Neville and Cressman, 2018] or 
perturbation schedule [Abeele and Bock, 2001; Kagerer et al., 1997; Modchalingam et al., 2023]) 
result in opposing effects on implicit learning. Taken together, we anticipate that research into how 
the properties of implicit and explicit learning differ when each process is studied in isolation versus 
when jointly operating will be an exciting avenue for future research.

Second, the dissociation between implicit and explicit motor learning processes has primarily been 
established in simple sensorimotor learning tasks, those in which most of the performance changes 
occur within just a few minutes. It remains to be seen whether analogous principles apply to the acqui-
sition of complex motor skills – those that require hours, days, and even weeks to learn (Du et al., 
2022; Haith et al., 2022; Listman et al., 2021; Nah et al., 2020; Scholz et al., 2009). We believe that 
understanding complex motor skill acquisition will pose a considerable challenge, one likely neces-
sitating new computational principles and insights – a topic we will examine in the following section.

is local, centered around the aiming location (i.e., 0° on the x-axis). Figure adapted from Figure 2B in McDougle 
et al., 2017.

© 2015, American Physiology Society. Figure 4A-B is taken from Figure 7 in Bond and Taylor, 2015, Journal of 
Neurophysiology. It is not covered by the CC-BY 4.0 license and further reproduction of this panel would need 
permission from the copyright holder.

© 2017, Nature Communications. Figure 4D is taken from Figure 4 in Morehead et al., 2017, Journal of 
Cognitive Neuroscience. It is not covered by the CC-BY 4.0 license and further reproduction of this panel would 
need permission from the copyright holder.

© 2017, American Physiology Society. Figure 4G-H is taken from Figure 2B in McDougle et al., 2017. Journal of 
Neurophysiology. It is not covered by the CC-BY 4.0 license and further reproduction of this panel would need 
permission from the copyright holder.

Figure 4 continued
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Figure 5. Group and subgroup performance in an explicit motor learning task. (A) Median time course of heading 
angle during baseline, perturbed feedback, and aftereffect (no feedback) phases. During the perturbation phase, 
the feedback cursor was rotated 60° from the actual position of the hand when the movement distance equaled 
the target amplitude. To isolate strategy use, we abolished implicit adaptation by delaying the onset of the 
feedback by 800 ms. The effectiveness of this manipulation is given by the fact that there is no evidence of an 
aftereffect. (B) Results from an unsupervised clustering algorithm. We used a dynamic time warping approach to 
quantify the degree of dissimilarity between participants’ time series (Jeong et al., 2011; Sidarta et al., 2022). 
We then applied a k-means clustering algorithm, which identified four optimal clusters via the elbow method 
of within-cluster sum of squared errors (colors denote different clusters; points denote different individuals). 
(C–F) Median time course of heading angle for the four subgroups that exhibit (C) fast insight, (D) slow insight, 
(E) systematic exploration (sign flips of ±60°), and (F) erratic exploration. Shaded error bars denote first/third 
interquartile range. Figures generated by data from Cisneros et al., 2024.

https://doi.org/10.7554/eLife.91839
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The 3R framework for motor learning: Reasoning, 
refinement, and retrieval
Learning complex motor skills is a uniquely challenging endeavor. This process requires the simulta-
neous coordination of numerous muscles and joints, each subject to different biomechanical constraints 
and metabolic demands. While some constraints on coordination are wired into our genetic code and 
emerge spontaneously given the right environment, the coordination demands for complex skills will 
require considerable cognitive control over these many degrees of freedom. Additionally, learning 
complex motor skills often involves developing new physical intuitions about how subtle differences 
in movement can lead to drastically different outcomes (e.g., an amputee learning to use a new 
myoelectric prosthesis). Yet, despite these formidable challenges, humans are capable of learning a 
near-limitless repertoire of movements, enabling babies to walk and talk, athletes to achieve incred-
ible levels of skill, and patients to recover from neurological disorders.

How humans achieve these impressive feats of complex motor skill acquisition remains poorly 
understood. This gap in knowledge partly stems from a long-standing neglect of the role of cognition 
in motor learning because such processes are generally hard to formalize and often exhibit high vari-
ability. Conversely, cognitive science frequently overlooks the role of motor control in decision-making; 
for example, many decisions are constrained by the sensorimotor outcomes associated with making a 
choice (Chen et al., 2017; McDougle et al., 2016a; Rmus and Zou, 2022). To make progress toward 
a comprehensive theory of motor learning, one that can explain the intricate cognitive–motor inter-
actions that facilitate successful motor skill acquisition, we propose a ‘3R’ framework that integrates 
three fundamental concepts shared between the motor learning and cognitive science communities: 
reasoning, refinement, and retrieval. This new framework establishes a way to understand how new 
sensorimotor control policies – mappings between a learner’s state and context to an action – are 
acquired through reasoning, optimized through refinement, and automatized through retrieval.

Reasoning
This involves understanding (often arbitrary) action–outcome relationships and using this knowledge 
to construct an effective control policy (Collins and Koechlin, 2012; Donoso et al., 2014; Heald 
et al., 2021; Lillicrap et al., 2013; Schone et al., 2023; Todorov and Jordan, 2002; Yang et al., 
2021). To illustrate this concept, consider learning to ride a bicycle: one of the initial steps for the 
novice is to understand the relationship between the forces generated by the arms on the handle-
bars and the consequent movements of the bicycle (Table 1). Once the novice identifies the correct 
action–outcome relationship, she can leverage this physical intuition to derive a crude control policy 
(Allen et al., 2020; Battaglia et al., 2013; Fischer and Mahon, 2021).

Motor learning researchers can draw valuable insights from cognitive science, a field that has had 
considerable success in formalizing computational models of reasoning. One flavor of reasoning is 
‘Inference over Hypotheses’ (Griffiths et al., 2010; Piantadosi et al., 2016; Rule et al., 2020; Xia 
and Collins, 2021), which entails two main components: a hypothesis space and means to evaluate 
the elements of that space. For motor skills, the former might consist of domain-specific action prim-
itives such as ‘push the right arm forward’ or ‘pull the left arm backward’ and relational primitives 
such as ‘or’, ‘and’, ‘before’, and ‘after’. By combining these primitives, more complex hypotheses can 
be created; for example, ‘pushing the right arm forward and pulling the left arm backward will move 

Table 1. Reasoning, refinement, and retrieval in different motor skill learning contexts.

Learning to bike Learning to play tennis Learning to play piano Learning to walk

Reasoning

Understanding the mapping 
between arm movements and 
direction of the bike

Understanding how different arm 
and wrist movements affect the 
trajectory of the ball

Understanding the relationship 
between musical notes and the 
required finger movements

Developing an intuition for 
how to distribute weight to 
achieve balance

Refinement

Fine-tuning the amplitude of 
movement for smooth and 
efficient cycling.

Fine-tuning the angle of the stroke 
and racquet grip to accurately hit 
the ball

Fine-tuning the force and timing 
to enhance emotional expression

Fine-tuning the muscular 
coordination to maintain 
balance while walking

Retrieval
Performing a flawless ‘Wheelie 
Drop’ when encountering stairs.

Executing a complex spin serve 
when finding the opponent in a 
favorable receiving position

Improvising new musical pieces by 
combining learned melodies

Rapid recovery from 
stumbles
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the bike leftward’. The merits of the hypotheses can be evaluated via inference, where learners use 
sensory feedback to strengthen or weaken their beliefs about each hypothesis.

Reasoning as inference has several advantages over previous ‘lower level’ models of motor learning. 
First, it can account for behaviors inconsistent with gradual error reduction. For example, marked 
exploratory behavior early in learning and punctuated jumps in performance may signify the rapid 
modification and adoption of new action–outcome hypotheses. During visuomotor rotation learning, 
errors may show systematic sign flips when the novice mistakes the direction of the perturbation as a 
clockwise rotation instead of a counterclockwise rotation. Or errors may systematically increase when 
a novice pursues an incorrect hypothesis such as mistaking a rotation for a mirror reflection. Second, 
reasoning as inference goes beyond learning which affine transformation (e.g., rotation, translation, 
reflection, etc.) best explains an action–outcome relationship (e.g., Baddeley et  al., 2003; Burge 
et al., 2008; Garvert et al., 2023; Wei and Körding, 2010). Hypotheses may be more abstract in 
nature and thus comprise a near-infinite combination of action-relational primitives.

Reasoning can vary in the level of reportability and intentionality. Most often, reasoning is highly 
reportable and intentional (i.e., explicit and strategic). A learner might employ inferential reasoning to 
understand which set of primitives best explains the action–outcome relationship (e.g., “How should 
I best coordinate my arms to make a leftward turn on my bicycle?”) and/or abductive reasoning to 
identify the most plausible cause (e.g., “Did moving my right arm forward and left arm backward 
cause the bike to turn left?”). Reasoning may also be ineffable and unintentional, relying on compu-
tationally simpler and hypothesis-free approaches (Collins, 2018; Collins et al., 2017; Collins and 
Frank, 2012; Smith et al., 2023). For example, a learner may unconsciously adopt a simple win-stay/
lose-shift heuristic, where successful actions are repeated, and unsuccessful actions are avoided. (It 
is debatable whether the use of heuristics constitutes reasoning or refinement.) Future studies are 
needed to precisely quantify how reasoning contributes to motor skill acquisition and explore whether 
and how reasoning processes help break down a complex skill into more learnable subcomponents.

Refinement
This entails adjusting movement parameters to better achieve a motor goal. Here the term ‘motor 
goal’ is used to highlight the distinction between abstract goals related to decision-making (“I need 
caffeine.”) and those related to movement (“I am going to grasp the handle of the coffee mug.”) 
(Molinaro and Collins, 2023a; Wong et al., 2015). This refinement process is crucial as it enables 
learners to fine-tune their control policy to achieve movement goals with increased accuracy, precision, 
and efficiency. Building on the previous example, once our novice cyclist understands how manipu-
lation of the handlebars controls the bike’s heading angle, she needs to refine this skill, learning the 
optimal timing and amplitude of the motor commands needed for different types of turns. Similarly, in 
visuomotor adaptation tasks, this refinement process is evident when motor behavior, initially abrupt 
and erratic, transitions to a more gradual and precise tuning of the angular shift required to nullify 
residual errors (Taylor and Ivry, 2011; Taylor et al., 2014).

Refinement can be viewed as a process of utility maximization (Wolpert and Landy, 2012; Yoon 
et al., 2020), with the inputs to the utility function dependent on task requirements. Classic models 
of motor learning have focused on maximizing sensorimotor utilities such as accuracy (Körding and 
Wolpert, 2004), precision (Shmuelof et al., 2012b), and energy conservation (Abram et al., 2019; 
Finley et al., 2013). A comprehensive model of strategy refinement will need to consider how both 
sensorimotor and domain-general utilities are jointly refined. Here, too, motor learning researchers 
can draw valuable insights from cognitive science. In that literature, domain-general utilities that 
constrain learning include reward (Sutton, 1999), intrinsic motivation (Kulkarni et al., 2016; Molinaro 
and Collins, 2023b; Wulf and Lewthwaite, 2016), financial incentives (Lebreton et al., 2018), cogni-
tive effort (Frömer et al., 2021; Hodges and Lohse, 2020; Koranda et al., 2022), sense of agency 
(Haggard, 2017; Parvin et  al., 2018), level of embodiment (Kieliba et  al., 2021; Schone et  al., 
2023), informativeness (Barack et al., 2023), allocation of attention (Wulf and Su, 2007), and social 
praise (Mueller and Dweck, 1998).

While the control policy associated with an explicit strategy could be re-parameterized, this may 
be achieved by another round of reasoning. Refinement, therefore, primarily refers to the iterative, 
implicit adjustment to a control policy. Indeed, the process of implicit sensorimotor recalibration 
described in the section ‘The contribution of strategy use in simple sonsorimotor learning tasks’ could 
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be considered a form of refinement since it typically leads to improved performance, with accuracy 
being the primary utility that is maximized (but see Mazzoni and Krakauer, 2006; Morehead et al., 
2017).

Retrieval
This entails recalling a control policy that has proven efficient in achieving a motor goal. Once a 
cyclist has refined the control policy for maintaining a steady bike ride, this policy becomes stored 
as a long-term motor memory and, with appropriate contextual cues, can be readily retrieved (Heald 
et al., 2021; Xia and Collins, 2021). For example, after many hours of practice, our bike rider when 
encountering a set of stairs might execute a flawless ‘Wheelie Drop’, lifting the front wheel off the 
ground to bounce down on just the rear wheel. Similarly, in visuomotor adaptation tasks, the retrieval 
process becomes evident as motor behavior transitions from reportable and intentional to ineffable 
and automatic (Haith et al., 2015; Huberdeau et al., 2019; McDougle and Taylor, 2019). With repe-
tition, the retrieval of a control policy will no longer entail preparation costs (Huberdeau et al., 2019).

Importantly, this implicit process, which emerges from the proceduralization of a control policy 
(Anderson, 1982), differs significantly from that associated with implicit sensorimotor recalibration. 
First, a retrieved policy does not involve changes to a sensorimotor map, the mapping between the 
perceived and intended actions; as such, it will not result in an aftereffect, the cardinal signature of 
implicit recalibration. Instead, a retrieved policy is a well-practiced mapping between context/states 
and intended actions. Second, a retrieved policy can be reported and strategically overridden upon 
retrieval, particularly when individuals are given sufficient time (Hardwick et al., 2019; Werner et al., 
2015). In contrast, implicit recalibration cannot be verbalized or deliberately overridden (Morehead 
et al., 2017; Tsay et al., 2020).

Cross-pollination between cognitive science (Cohen and Eichenbaum, 1993; Eckstein and Collins, 
2020; Sanders et al., 2020; Xia and Collins, 2021) and motor learning (Haruno et al., 2001; Heald 
et al., 2021; Oh and Schweighofer, 2019) has fostered the development of several computational 
models of motor memory retrieval. These models formalize how learners use contextual information 
(e.g., sensory cues and bodily states) to retrieve the appropriate control policy for accomplishing 
a goal (Heald et al., 2021). These models generally consist of three components: first, the learner 
possesses a memory of various contexts, each associated with a control policy. For example, when 
heading out on a smooth well-paved trail, a mountain biker might adopt a narrow, aerodynamic posi-
tion to increase speed, whereas to start down a rocky descent, shift to the back edge of the seat to 
adopt a more stable position. Second, the learner continuously makes contextual inferences from a 
stream of sensory cues. For example, if our biker starts feeling friction against her wheels, she might 
infer, with some uncertainty, that she is encountering a sandy or marshy section of the trail. If none of 
the contextual memories match the current context, the learner needs to create a new memory asso-
ciated with a new control policy, one that can undergo further reasoning and refinement. Third, the 
learner selects an action based on an integrated control policy, one that may be derived by blending 
control policies and/or value functions associated with distinct contexts.

How does the 3R framework help us understand motor expertise? The emphasis on implicit retrieval 
over strategic reasoning bears similarity to instance theories of expertise in which practice results in 
the emergence of a large set of stimulus–response associations from which to draw on Logan, 1988. 
However, while such models might capture the accuracy and efficiency that comes with extended 
practice, they fall short in accounting for the flexibility that is also a hallmark of expertise. Instead, 
the 3R framework postulates that experts possess a wealth of contextual memories associated with a 
given motor task, each with a well-reasoned and well-refined control policy acquired through exten-
sive practice and experience. Experts do not need to engage in the computationally demanding 
process of creating new memories and forming new control policies; their extensive sensorimotor 
repertoire allows them to identify the current context and recall the appropriate action efficiently and 
confidently. Moreover, should a motor error arise, the expert is well-poised to recognize whether the 
error originates from contextual inference, action execution, or action selection, with the latter quickly 
correctable by switching to another well-rehearsed control policy.

To illustrate how the 3Rs framework applies to learning another complex motor skill, let us examine 
the process of becoming proficient in tennis (Table 1). The reasoning phase is marked by an under-
standing of how different arm and wrist movements affect the racket’s swing and the ball’s trajectory. 
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A beginner tennis player can explore different action–outcome hypotheses to determine which move-
ments effectively control the racquet and direct the ball. The transition from the reasoning to the 
refinement phases signifies a shift from understanding which movements are appropriate for a given 
context to optimizing how the selected movements are performed to achieve specific motor goals. 
For example, a player aiming for accuracy might focus on fine-tuning the angle of both the stroke 
and racquet grip to accurately hit the ball. Conversely, a player striving for power might concentrate 
on larger, more forceful strokes. Finally, during the retrieval phase, the tennis player might note the 
position of their opponent when deciding where to place the serve and with which type of spin. This 
phase represents the pinnacle of learning, where complex actions are performed automatically and 
are seamlessly integrated into the player’s motor repertoire.

The 3R framework can also capture features of motor development. While the transition from 
sitting up to crawling to walking is certainly wired into our genes, variation across individuals and 
cultures suggest that the emergence of even such a fundamental skill may be shaped by reasoning, 
refinement, and retrieval (Campos et al., 1992). Children are unlikely to engage in complex forms 
of reasoning, but they may acquire motor skills through less cognitively demanding, heuristic-based 
forms of reasoning (Gopnik, 2012). For example, through practice and instruction, children might 
develop a better intuition for how to effectively shift their weight, aiding them in maintaining a more 
stable and balanced gait. Indeed, most learning likely arises from the implicit refinement of control 
policies, where they iteratively fine-tune the coordination between their upper and lower body muscles 
to achieve a more efficient gait. In the retrieval phase, the act of walking transitions from an effortful 
act to an automatic skill, enabling the child to walk more naturally and swiftly recover from stumbles.

How can we examine the neural correlates of motor skill acquisition? Although numerous 
approaches exist (Avila et al., 2022; Calame et al., 2023; Darmohray et al., 2019; Georgopoulos 
et al., 1989; Vyas et al., 2020), systems neuroscientists usually do not fully know the causal rela-
tionship between neural activity and behavior. Conversely, in a brain–computer interface (BCI) para-
digm, the precise causal relationship between neural activity and behavior is determined by the BCI 
mapping, set by the experimenter. Frequently the initial mapping between neural activity to cursor 
movement is intuitive (e.g., neural population trajectories signaling a leftward arm movement moves 
the cursor leftward). However, new and arbitrary mappings can be introduced and readily learned 
(Carmena et al., 2003). As such, the BCI paradigm allows one to closely examine how changes in 
neural activity during learning lead to improved behavior.

Moreover, the BCI paradigm may reveal the neural circuits involved in reasoning, refinement, and 
retrieval (Golub et  al., 2018; Hennig et  al., 2021a; Hennig et  al., 2021b). For example, reasoning 
may manifest as erratic changes in the animal’s kinematics during early learning (e.g., a cost in reaction 
time and/or systematic errors in movement direction). Using these data, we can infer the hypotheses 
the animal is pursing as well as examine how these hypotheses correlate with distinct neural trajecto-
ries, reflecting the range of action–outcome primitives. Refinement may manifest as gradual, iterative 
improvements in movement speed and accuracy. Using these data, one can explore whether refinement 
simply facilitates faster and more efficient changes in neural activity along the same neural trajectory or 
if it involves the evolution of novel neural trajectories (Losey et al., 2022). Finally, once control policies 
become implicit and are automatically retrieved, one can examine whether 'higher level' cortices remain 
necessary for action execution, or, similar to many reflexes, whether action execution has been offloaded 
to 'lower level' subcortical areas (Bartels et al., 2021). By adopting shared definitions and theoretical 
frameworks between human and animal researchers, we can accelerate our progress in understanding 
how reasoning, refinement, and retrieval are implemented by the motor system.

While future experiments are needed to probe the dynamics of reasoning, refinement, and retrieval 
throughout motor learning, these ideas should open exciting avenues to advance theories of skill 
acquisition and inform the design of training programs to enhance expertise.

Comparing and contrasting the 3R framework with Fitts–
Posner’s stages in motor skill learning
The 3R framework shares similarities with the classic skill acquisition framework proposed by Fitts and 
Posner, 1979. The Fitts–Posner framework describes three stages of learning: the cognitive, associa-
tive, and automatic stages. In the cognitive stage, the novice grasps an understanding of the goals of 
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the task and the general structure of the actions required to achieve that goal. In the associative stage, 
the novice experiments with different gestures, learning the different movement subcomponents that 
form the skilled action. Finally, the automatic stage captures how the skill becomes refined, with the 
expert moving in an effortless and near-reflexive manner.

While the 3R and Fitts–Posner frameworks both acknowledge that the acquisition of motor skills 
involves a transition from being cognitively demanding to being more automatic, there are notable 
differences. First, the Fitts–Posner framework emphasizes a singular progression through the cogni-
tive, associative, and automatic stages of learning. In contrast, the 3R framework starts from the 
premise that motor skills involve the operation of multiple learning processes, all of which may work 
in parallel. For example, when our tennis player reasons through how her arm and wrist movements 
impact the ball’s trajectory, she may be simultaneously refining her level of exertion, retrieving motor 
memories from her past badminton classes, and even implicitly recalibrating to the weight of her new 
racquet. This feature is crucial as it highlights that motor learning may not be a linear progression but 
rather a dynamic interplay of many processes evolving in parallel.

Second, the Fitts–Posner framework describes motor skill acquisition at a purely phenomenological 
level. In contrast, the 3R framework outlines specific computational mechanisms. For example, as a starting 
point, we suggested that reasoning might rely on inference and/or heuristics, refinement driven by utility 
maximization, and retrieval dependent on contextual inference. This level of computational specificity will 
hopefully inspire more concrete experimental tests, as well as facilitate easy integration with other learning 
processes. While reasoning, refinement, and retrieval constitute one route toward successful motor 
learning, these processes can be readily combined with other computational mechanisms, such as those 
for implicit error-based, implicit reinforcement-based, and implicit use-dependent learning.

Forging a stronger bond between cognition and action
We have demonstrated the important, yet underappreciated role of explicit strategy use in sensorimotor 
learning. Consequently, there has been limited progress in the development of models that incorporate 
this crucial component of motor learning. Here, we present a framework that postulates how successful 
motor performance relies on three fundamental processes: reasoning, refinement, and retrieval. As 
these ideas advance toward a formal computational account, we see opportunities for increased cross-
pollination between motor learning and cognitive science communities. Undoubtedly, these intellectual 
bonds will be essential for developing a comprehensive theory of motor learning, capable of explaining 
the intricate cognitive–motor interactions that facilitate successful motor skill acquisition.

Open questions
1.	 How do reasoning, refinement, and retrieval differ across motor learning tasks? For example, 

how do action–outcome hypotheses and utility functions differ between skills that are part of 
our natural development (e.g., reaching, walking) and those that may be acquired at a later age 
(e.g., knitting, ballroom dancing)?

2.	 Neuropsychological findings suggest that the prefrontal cortex and cerebellum may play a role 
in reasoning but not in refinement or retrieval (Butcher et al., 2017; McDougle et al., 2022a; 
Taylor and Ivry, 2014; Tsay et al., 2023b; Wong et al., 2019). Are other brain areas involved in 
retrieval but not reasoning (Shmuelof et al., 2014)? More generally, how are reasoning, refine-
ment, and retrieval implemented in the brain?

3.	 What are the behavioral and neural constraints underlying the transition of motor skills from 
being deliberate to automatic, from being explicit to implicit (Fresco et  al., 2023; Servant 
et al., 2018)?

4.	 How can the 3R framework inform physical rehabilitation for patients with movement disorders 
(Roemmich and Bastian, 2018; Tsay and Winstein, 2021)? How do individual features such as 
age, physical fitness, and different cognitive abilities impact reasoning, refinement, and retrieval 
(Anderson et al., 2021; Anguera et al., 2010; Guo and Song, 2023; Tsay et al., 2023a)?

5.	 How are reasoning, refinement, and retrieval impacted by changes in context (Avraham et al., 
2022; Dawidowicz et al., 2022; Forano et al., 2021; Heald et al., 2021)?

6.	 How do reasoning, recall, and refinement contribute to motor learning in amnesia, as observed 
in cases like H.M., where explicit memory of the task is absent?
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