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There is mounting evidence for the idea that performance in a
visuomotor rotation task can be supported by both implicit and
explicit forms of learning. The implicit component of learning has
been well characterized in previous experiments and is thought to
arise from the adaptation of an internal model driven by sensorimotor
prediction errors. However, the role of explicit learning is less clear,
and previous investigations aimed at characterizing the explicit com-
ponent have relied on indirect measures such as dual-task manipula-
tions, posttests, and descriptive computational models. To address this
problem, we developed a new method for directly assaying explicit
learning by having participants verbally report their intended aiming
direction on each trial. While our previous research employing this
method has demonstrated the possibility of measuring explicit learn-
ing over the course of training, it was only tested over a limited scope
of manipulations common to visuomotor rotation tasks. In the present
study, we sought to better characterize explicit and implicit learning
over a wider range of task conditions. We tested how explicit and
implicit learning change as a function of the specific visual landmarks
used to probe explicit learning, the number of training targets, and the
size of the rotation. We found that explicit learning was remarkably
flexible, responding appropriately to task demands. In contrast, im-
plicit learning was strikingly rigid, with each task condition producing
a similar degree of implicit learning. These results suggest that
explicit learning is a fundamental component of motor learning and
has been overlooked or conflated in previous visuomotor tasks.

explicit learning; implicit learning; visuomotor rotation; motor adap-
tation; motor learning

VISUOMOTOR ROTATION TASKS have proven to be a rich experi-
mental paradigm for elucidating principles of sensorimotor
learning (Cunningham 1989; for review, see Krakauer 2009).
Generally, the goal of the task is to terminate a virtual cursor,
controlled by motion of the hand, within a designated target
region. During the learning phase, an angular rotation is im-
posed on the cursor and participants can learn to counter the
rotation by moving their hand in an equal and opposite direc-
tion. When the rotation is removed, participants exhibit per-
sistent aftereffects considered to be a hallmark of motor adap-
tation (for review, see Taylor and Ivry 2014).

Traditionally, learning was thought to arise predominantly
from a single process—through the updating of an internal
forward model based on sensory-prediction errors or the dif-
ference between predicted and actual cursor feedback (Syn-
ofzik et al. 2008; Tseng et al. 2007; Wolpert et al. 1998).
Recent work, however, has shown that a number of other
processes can operate during learning, such as reinforcement

learning (Huang et al. 2011; Izawa and Shadmehr 2011),
use-dependent plasticity (Verstynen and Sabes 2011; White
and Diedrichsen 2010), and explicit strategies (Benson et al.
2011; Mazzoni and Krakauer 2006; Taylor and Ivry 2011). In
particular, explicit aiming strategies are capable of fully com-
pensating for a rotation in a single trial (Mazzoni and Krakauer
2006). Interestingly, however, as participants continue to use
an explicit strategy, their reaches begin to drift in the direction
of the strategy, increasing directional error and deteriorating
performance (Mazzoni and Krakauer 2006). If training is
continued further, this drift eventually reverses and task per-
formance is restored (Taylor and Ivry 2011). This complex,
nonmonotonic behavior can be explained by a dynamic inter-
play between explicit learning, related to fluctuations in aiming
strategies, and implicit learning, related to the training of a
forward model (Mazzoni and Krakauer 2006; Taylor and Ivry
2011).

It is worth noting that the operation of these distinct pro-
cesses was only exposed when participants were provided with
an explicit strategy at the beginning of the learning phase
(Mazzoni and Krakauer 2006; Taylor and Ivry 2011). The
degree to which explicit and implicit learning are present in
standard visuomotor learning tasks has been debated, and a
number of attempts have been used to dissociate their relative
contributions through posttests (Hegele and Heuer 2010, 2013;
Heuer and Hegele 2008), dual-task manipulations (Taylor and
Thoroughman 2007, 2008), and modeling (Taylor and Ivry
2011). Recently, we developed a simple method to directly
assess explicit strategies by having participants verbally report
their aiming direction on each trial, which was made possible
by including numbered visual landmarks in the workspace for
participants to select (Taylor et al. 2014). We found that
explicit and implicit learning processes were dissociable and
followed unique time courses, with explicit learning exhibiting
large fluctuations early in training before stabilizing late in
training and implicit learning proceeding in a slow and gradual
manner throughout training. Notably, participants who were
asked to report their aiming strategies only learned at a slightly
faster rate than participants who did not report aiming strate-
gies—the standard procedure in visuomotor tasks—suggesting
that aiming strategies may be present in standard visuomotor
rotation tasks and that they may be a common compensation
mechanism.

While this new approach revealed how the time course of
explicit aiming strategies unfolds during training, it is uncer-
tain how the shape of this time course responds to different task
configurations and demands. In the previous study, we only
tested participants with one configuration of visual landmarks
used for reporting aiming strategies. It is possible that our
previously characterized time course of explicit learning was a
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function of the configuration of visual landmarks and that, with
a different configuration of landmarks, explicit learning would
follow a different time course. For example, if the visual
landmarks always aligned with the target location, it could
potentially provide a strong cue to the participants and allow
them to quickly determine the appropriate landmark to counter
the rotation, leading to a steplike explicit learning function
considering that they would simply have to report the same
landmark for each trial. However, if the visual landmarks were
unrelated to the target location, then it might be more difficult
for participants to quickly figure out an appropriate aiming
strategy, leading to a different time course of explicit learning.
Thus the purpose of experiment 1 was to characterize the time
course of explicitly learning an aiming strategy under different
landmark conditions and to determine whether the shape of the
previously reported time course of explicit learning was more
general in nature. Similarly, in our previous study explicit
learning was characterized by using only one rotation size (i.e.,
45°) and eight target locations, and while the extent of explicit
learning has been examined with different rotation sizes in
prior studies, it was only assessed with posttests at the end of
the experiment (Heuer and Hegele 2008). Therefore, in the
present set of experiments, we sought to better characterize
how explicit aiming strategies and implicit learning may
change as a function of visuomotor rotation task demands.
Specifically, we manipulated the orientation of the visual
landmarks used for reporting aiming strategies, the number of
training targets, and the size of the rotation. We found that
aiming strategies were successfully employed under all task
conditions, suggesting that explicit learning is highly flexible
and rapidly accommodates different task demands. While aim-
ing strategies increased in magnitude with the number of
targets, implicit learning decreased. Moreover, aiming strate-
gies scaled with the size of the rotation, while implicit learning
did not. Altogether, we find that aiming strategies are more
responsive to task demands than implicit learning and that
overall learning in a visuomotor rotation task appears to be
more reflective of explicit processes than implicit processes.

METHODS

Participants and Experimental Apparatus

Ninety young adults [52 women, 38 men; mean age 20 (SD 2.2) yr]
participated in one of three visuomotor rotation experiments. Partic-
ipants were recruited from the research participation pool maintained
by the Department of Psychology at Princeton University and re-
ceived either class credit or $12.00 for participation. All participants
had normal or corrected-to-normal vision and were right-handed, as
verified by the Edinburgh Handedness Inventory (Oldfield 1971). All
participants provided informed consent, and the experimental protocol
was approved by the Princeton University Institutional Review Board.

Participants performed a center-out reaching task, which required
sliding their right hand across a digitizing tablet while holding a
digitizing pen (Intuos 3, Wacom, Vancouver, WA). Reaching move-
ments were directed to virtual targets located 7 cm from the start
position, and the tablet sampled the movement trajectory at 100 Hz.
All stimuli were displayed by a 17-in., 1,024 � 768-pixel-resolution
LCD computer monitor with a refresh rate of 60 Hz (Dell, Dallas,
TX). The monitor was mounted 25.4 cm above the tablet, which
occluded visual feedback of the hand. Visual feedback for the move-
ment trajectory, when provided, was in the form of a small circular
cursor (0.31-cm radius). The game was controlled by custom software

(Pygame, http://python.org) from a laptop computer (Apple, Cuper-
tino, CA).

General Procedure

At the beginning of each trial, participants were required to position
their hand at the center of the workspace (start position), which was
indicated by a small empty circle (0.41-cm radius) at the center of a
horizontally positioned visual display located �11.4 cm from the
participants’ chair. Participants were guided to the center by a larger
empty circle that indicated the radial distance from their current
position to the start position. Once the hand was within 0.5 cm of the
start position, a small white cursor appeared indicating the hand
position underneath the display. After participants maintained the start
position for 1 s, a circular green target (0.60-cm radius) appeared. The
number of target locations varied between experiments (see specific
methodology for each experiment below).

Participants were instructed to make a ballistic-style reaching
movement by “shooting” their right hand through the target, with
additional instruction to refrain from stopping at the target. Movement
onset was defined as exceeding a radial distance of 0.5 cm from the
start position. Movement duration was quantified as the time from
movement onset to cursor termination on the virtual ring. Only
end-point feedback, presented as the static position of the cursor on
the virtual ring (7 cm), was provided for each reach (except for the
first 16 familiarization trials in the Baseline block, which provided
continuous online feedback). For all other trials in the Baseline block,
and all trials in the Baseline-Report block and the Rotation block, the
white cursor was removed as soon as the participant’s hand exceeded
a radial distance of 0.5 cm from the start position and reappeared in
the form of a red cursor when the participant’s movement exceeded a
radial distance of 7 cm. If the reach exceeded 400 ms in duration,
participants received an auditory warning that the movement was “too
slow.” End-point feedback showing where the cursor landed on the
virtual ring was provided for 1.5 s before the display was cleared;
then, participants were required to return to the start position using the
guiding circle mentioned above. In all experiments, participants were
instructed that the goal of the task was to land the red cursor on the
green target. For each trial, if any part of the red cursor overlapped
with the target participants were awarded with 1 point and a pleasant
“ding” sound was played; otherwise, they failed to earn any points and
an unpleasant “buzz” sounded. Scores were tallied throughout the
experiment and displayed every 40 trials.

The visual workspace also included numbered landmarks pre-
sented on a virtual ring, whose orientation varied between condi-
tions in experiment 1 (see below and Fig. 1). Participants were
instructed to report their aiming location before initiating a move-
ment. Specifically, they were instructed, “You may have noticed
that there were little numbers flanking the target. I would like you
to tell me, before moving, the number that you think you should
aim to in order to get your cursor on the target. So if you think that
you should aim directly at the target, then please say ‘green.’ But
if you think that you should aim somewhere else, please tell me
what that number is.” Occasionally, when a participant forgot to
report the number of a landmark before moving, the experimenter
gave him or her the following verbal reminder: “Please continue to
report the number to which you are aiming before you start
moving.” Moreover, every 40 trials, the game software reminded
participants that “the goal of the task is to get the red cursor on
the green target. Always aiming directly at the target may not be
effective.” These instructions were provided automatically by the
game software and read from a script by the experimenter to ensure
that all participants were delivered the same instructions.

All experiments followed the same five-block structure (Fig. 1C).
In the first block, participants were provided with veridical feedback
for 48 trials (Baseline block) to familiarize them with the task using
continuous online feedback for the first 16 trials. At the start of the
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second block, participants were provided with the landmark reporting
instructions as outlined above and continued to receive veridical
feedback for the next eight trials (Baseline-Report block). Occasion-
ally, these instructions prompted a few participants on some trials to
aim to locations other than the target during this Baseline-Report
block for reasons that are not entirely known. A clockwise rotation
was abruptly introduced in the third block of 320 trials (Rotation
block). In the fourth block of 40 trials, visual feedback of the cursor,
the rotation, and the landmarks were all removed (No-Feedback
block). Additionally, participants were provided with specific aiming
instructions: “I want you to aim directly for the green target—so stop
aiming to the numbers. You no longer need to report where you are
aiming on each trial. In fact, the numbers will not even be present on
the screen. We will also not show you feedback for a while. You will
just hear a ‘knocking’ sound that will inform you that you reached far
enough. Remember: just aim to the green target on every trial.” In the
final block of 40 trials (Washout block), veridical cursor feedback was
restored.

Experiment 1: Visual Landmark Orientation

Twenty participants were equally divided into two groups, which
differed in the orientation of the landmarks. In the Rotating condition,
the numbers rotated along with the direction of the target, such that

they increased and decreased in the counterclockwise and clockwise
directions, respectively. For example, if the target appeared at 90°,
then the number 1 was in the counterclockwise direction from the
target and the number �1 was in the clockwise direction (Fig. 1A).
In the Fixed condition, the numbers did not rotate with the direction
of the target but remained in a fixed orientation regardless of the target
direction. For example, if the target appeared at 90° then the number
50 was in the counterclockwise direction from the target and the
number 48 was in the clockwise direction (Fig. 1B). The target could
appear at one of eight locations, which were separated by 45° along a
virtual ring with a radius of 7 cm (0°, 45°, 90°, 135°, 180°, 225°, 270°,
315°). The sequence of target locations was pseudorandomly pre-
sented, such that each target location was experienced before a
particular target location was repeated, and each participant received
a different randomized sequence of target locations. In each condition,
63 landmarks were displayed at any given trial (including the gray
target shown in Fig. 1A). For the Rotating condition, numbered
landmarks ranged from 1 to 31 and �1 to �31, separated by gray and
green targets. For the Fixed condition, numbered landmarks ranged
from 1 to 64, and the green target was presented on top of one of the
numbered landmarks as it followed its pseudorandomized location
sequence. In experiment 1, the rotation was 45° in the clockwise
direction.
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Reported aim direction  
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Fig. 1. Task workspace and structure. A: Rotating condition: a circular array of numbered landmarks flanked each side of the target and rotated along with the
target such that 1 and �1 were always adjacent to the target. This configuration was also used in experiments 2 and 3. B: Fixed condition: the numbered landmarks
remained fixed relative to the workspace regardless of target location. Before each movement, participants were instructed to verbally report where they needed
to aim to get their cursor on the target. C: task block structure.
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Experiment 2: Number of Training Targets

Thirty participants were equally divided into three groups, which
differed in the number of the targets. In the One-Target condition,
there was one target in the 0° direction. In the Two-Target condition,
there were targets in the 0° and 180° directions. Finally, in the
Four-Target condition, there were targets in the cardinal directions of
0°, 90°, 180°, and 270°. Target locations for the Four-Target condition
were pseudorandomized identically to experiment 1. For all condi-
tions, the aiming landmarks were oriented such that they rotated along
with the direction of the target (identical to the Rotating condition in
experiment 1; Fig. 1A). The imposed rotation was 45° in the clockwise
direction.

Experiment 3: Rotation Size

Forty participants were equally divided into four groups, which
differed in the size of the rotation. In the Fifteen, Thirty, Sixty, and
Ninety conditions, the rotation sizes were 15°, 30°, 60°, and 90°,
respectively. There were eight possible target directions, which were
pseudorandomized identically to experiment 1. The aiming landmarks
rotated along with the direction of the target (identical to the Rotating
condition of experiment 1; Fig. 1A).

Movement Analysis

Kinematic and statistical analyses were performed with MATLAB
(MathWorks, Natick, MA). To assess task performance, we focused
on the end-point hand angle measured when movements passed a
radial distance of 7 cm. Each movement trajectory, regardless of the
actual target location, was rotated to a common reference axis with the
target location set at 0°. The end-point hand angle was computed by
drawing a straight line between referent points positioned at the start
position and 7 cm along the trajectory and computing the angle of this
line. Positive angles indicate a counterclockwise deviation from the
target, and negative angles indicate a clockwise deviation from the
target. The end-point hand angles were then averaged in eight-trial
bins (epicycles) for each participant for further analyses. We opted to
average eight trials because our task included up to eight target
directions that were pseudorandomized (when applicable; see above).
Moreover, since the sequence of target locations (when applicable)
was randomized across participants, this procedure also removes
biases associated with specific target locations. Note that all data in
figures are reported in end-point hand angles, not target errors.

Our planned analyses focused on four phases of the experiment. To
verify that that there were no differences between groups prior to our
experiment manipulations, we submitted the averaged eight-trial ep-
icycle of the Baseline-Report block to a one-way ANOVA with Group
as the single factor. Note that two-sample t-tests were used for all
analyses of experiment 1, because they are equivalent to an ANOVA
for two groups. The epicycle for the Baseline-Report block was then
subtracted from all subsequent phases of end-point hand angles to
remove any potential systematic biases in reaching.

To quantify learning, we focused our analyses on the first and last
eight-trial epicycles of the Rotation block. The first epicycle was used
as a proxy for the rate of learning, while the last epicycle was used to
quantify the amount of learning. We performed two stages of analysis
on each measure. First, for each group we submitted the rate and
amount of learning to separate one-sample t-tests to determine
whether there were significant changes with respect to the Baseline-
Report block. Second, we examined whether there were differences in
the rate and amount of learning between groups by submitting these
values to separate one-way ANOVAs with Group as the single factor.
Since these measures were subjected to two statistical analyses, we
adjusted the � value to 0.025 for significance according to the
Bonferroni correction.

To quantify the size of the aftereffect, we focused on the first
epicycle of eight trials in the No-Feedback block. Similar to the

analyses in the Rotation block, we first verified the presence of an
aftereffect by submitting the difference between the No-Feedback
block and the Baseline-Report block epicycles to a one-sample t-test.
Subsequently, we tested for differences between groups by submitting
these values to a one-way ANOVA with Group as the single factor.
Note that since the epicycle is the average of eight trials, it reduces the
apparent size of the aftereffect since significant unlearning can occur
when feedback is present or absent (Kitago et al. 2013; Taylor et al.
2013, 2014; Taylor and Ivry 2013), but averaging over eight trials of
an epicycle reduces any target direction bias. The � value was also
adjusted to 0.025 because these measures were subjected to two
statistical tests.

To quantify the contributions of explicit and implicit learning, we
performed a procedure similar to that described above. Explicit
learning was converted into a measure of the participants’ aiming
angle by multiplying the verbally reported landmark by the spacing of
the numbered landmarks (5.625°) for each trial. Implicit learning was
computed by subtracting the aiming angles from the end-point hand
angle on each trial. Then, both explicit and implicit learning measures
were averaged in eight-trial bins. Our analyses of explicit and implicit
learning focused only on the first and last epicycles of the Rotation
block. These values were subjected to a two-stage analysis, first
verifying their change within group before comparing the differences
between groups, so the � value was set to 0.025.

The purpose of experiment 1 was to examine whether explicit
learning varied as a function of the visual landmarks; therefore, we
also quantified the variability of aiming—the probability that partic-
ipants changed their aim from one trial to the next, the magnitude of
this change, and how likely participants were to switch aiming
behaviors after a successful “hit” or an unsuccessful “miss” trial. To
compute the probability of aim change, the verbally reported land-
mark on the current trial was compared to the previous trial. If these
values were different, then that trial was marked with the value “1”;
otherwise it was marked with the value “0.” These values were then
averaged into bins of eight trials for each participant. The magnitude
of aim was also computed as the difference between the verbally
reported landmark on the current trial and the previous trial, but the
magnitude of the difference was preserved and converted into an
angular measure by multiplying by the landmark spacing constant of
5.625°. Since these values are discrete in nature, we focused on the
average of the entire block rather than on any particular epicycle of
trials. The likelihood of switching aiming strategies after a hit or miss
trial was submitted to a two-way ANOVA with factors of Group and
Outcome, with Outcome as a repeated measure.

For all measures subjected to statistical analyses, we report the
mean and the 95% confidence interval of the mean. For all statistical
tests, we report the uncorrected P value but note when it fails to pass
correction for multiple comparisons according to the Bonferroni
correction.

RESULTS

Experiment 1: Visual Landmark Orientation

All participants practiced reaching to the targets with verid-
ical feedback during the Baseline block to become familiarized
with the task. In the Baseline-Report block, participants con-
tinued to reach to the targets with veridical feedback while
reporting the number of the landmark to which they were
aiming. For participants in the Rotating condition, the land-
marks rotated along with the target (Fig. 1A) and all partici-
pants reported aiming directly to the green target. In contrast,
for participants in the Fixed condition, the landmarks remained
fixed relative to the workspace (Fig. 1B); thus these partici-
pants needed to report a different landmark number on each
trial if they continued aiming directly to the green target. Only
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2 of 10 participants reported a landmark number that was not
directly on top of the target, and this was generally directed
toward an adjacent landmark for only a few trials. Moreover,
participants did not substantially differ in their end-point hand
angles during the epicycle of the Baseline-Report block (t18 �
1.92, P � 0.07), measuring 1.54 � 0.78° and 0.38 � 0.90° in
the Rotating and Fixed conditions, respectively (see Fig. 3A).

After the Baseline-Report block, a 45° clockwise rotation
was introduced for 320 trials and participants in both groups
quickly learned to counter the rotation (Fig. 2A). Participants in
both the Rotating and Fixed conditions rapidly adjusted their
end-point hand angles within the first epicycle of the Rotation
block, measuring 15.3 � 9.32° (t9 � 2.98, P � 0.015) and 15.2 �
7.26° (t9 � 3.86, P � 0.004), but there were no differences
between groups (t18 � 0.17, P � 0.87). By the last epicycle of
the Rotation block, participants in both the Rotating and Fixed
conditions had fully compensated for the rotation, measuring
47.5 � 3.43° (t9 � 26.3, P � 0.001) and 46.4 � 3.14° (t9 �
27.9, P � 0.001), respectively. There were no differences
between groups in the amount of learning (t18 � 0.02, P �
0.99). Thus the difference in landmark orientation did not have
a significant effect on the rate or amount of overall learning
(Fig. 3A).

During the No-Feedback block the rotation was removed,
cursor feedback was absent, and landmarks were erased from

the screen. In addition, participants were instructed to aim
directly to the target to measure the presence of aftereffects
(Taylor et al. 2014). Aftereffects were present for both the
Rotating and Fixed conditions, measuring 13.3 � 2.39° (t9 �
9.26, P � 0.001) and 13.0 � 5.57° (t9 � 4.48, P � 0.002),
respectively, although aftereffect size was not significantly
different between groups (t18 � 0.30, P � 0.76; Fig. 3A).

Explicit and implicit learning. Participants in both groups
reported the number of the landmark to which they were
aiming for each trial in the Rotation block. The time series of
these aiming locations provides a measure of explicit learning
during rotation training (Fig. 2B). To measure the rate and
amount of explicit learning, we focused on the first and last
epicycles of the Rotation block, respectively. On average,
participants in both the Rotating and Fixed conditions rapidly
adjusted their aiming angle in the first epicycle of the Rotation
block, measuring 12.9 � 10.0° and 15.0 � 11.7°, respectively,
but, accounting for multiple comparisons, these adjustments
were only marginal (Rotating: t9 � 2.52, P � 0.03; Fixed: t9 �
2.50, P � 0.03) and there were no significant differences
between groups (t18 � 0.27, P � 0.79). By the last epicycle of
the Rotation block, participants in both the Rotating and Fixed
conditions were significantly aiming to a large degree, mea-
suring 28.0 � 6.35° (t9 � 0.8.63, P � 0.001) and 23.4 � 9.92°
(t9 � 4.62, P � 0.001), respectively; between-group differ-

Fig. 2. Experiment 1 learning time courses. A: end-point hand angle for Rotating and Fixed landmarks. B: explicit learning: angle of aiming location (verbally
reported landmark). C: implicit learning: subtraction of aiming direction from end-point hand angle. Vertical dashed lines denote when the rotation was
introduced and removed. Movement epicycles represent the average of an 8-trial bin, and shading represents the 95% confidence interval of the mean.
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ences were not significant (t18 � 0.77, P � 0.45). Therefore,
selecting an aiming location by the end of training in the Fixed
condition was not significantly more difficult than selecting an
aiming location in the Rotating condition (Fig. 3B). Indeed, the
time courses of explicit learning for the Rotating and Fixed
conditions were similar (r � 0.52, P � 0.005).

From Fig. 2, the Fixed group appears to aim to a lesser
degree throughout the Rotation block—though not signifi-
cantly less— even when the analysis focused on the average
aiming angle throughout the entire Rotation block (t18 � 0.79,
P � 0.44). However, between participants, the aim was more
variable in the Fixed condition compared with the Rotating
condition (t18 � 3.98, P � 0.001). Upon closer inspection, the
probability of aim change throughout the Rotation block was
also, on average, larger for the Fixed condition (Fig. 4A). The
degree to which the aim changed from trial to trial was also
larger for the Fixed condition (t18 � 5.27, P � 0.001; Fig. 4B).
For these analyses, the angles of reported aiming landmarks
were converted to angles relative to the target direction; there-
fore, the aiming variance observed in the Fixed condition was
not simply attributable to needing to report different landmarks
on each trial. Finally, we computed how likely participants
were to change their aiming behavior after a hit or miss trial
during the Rotation block and submitted these data to a mixed
factorial ANOVA with factors of Group and Outcome (re-
peated measure). We found that there was a main effect of
Group [F(1,18) � 47.5, P � 0.0001] and a main effect of
Outcome [F(1,38) � 4.3, P � 0.04] but no interaction [F(1,9) �
0.03, P � 0.85]. Accordingly, all participants exhibited a
win-stay, lose-shift behavior such that they were more likely to
change their aiming behavior after a miss trial compared with
a hit trial, although participants in the Fixed condition were
more likely to change their aim regardless of task outcome
(Fig. 4C). Differences in landmark orientation appear to
change the consistency of aiming strategies, but explicit learn-
ing appears to follow a similar overall time course in both
conditions.

To estimate implicit learning, we subtracted the aiming
angle from the hand angle on each trial (Fig. 2C). In contrast
with overall learning, implicit learning appears quite slow. It
was not significant for participants in either the Rotating or the
Fixed condition over the first epicycle of the Rotation block,

measuring 3.05 � 4.00° (t9 � 1.49, P � 0.17) and 0.22 �
9.28° (t9 � 0.05, P � 0.96), respectively (Fig. 3C). Further-
more, there were no differences between groups (t18 � 0.55, P �
0.59). By the end of the last epicycle of the rotation block,
implicit learning was much greater for both the Rotating and
Fixed groups, measuring 19.5 � 5.53° (t9 � 7.17, P � 0.001)
and 22.9 � 8.40° (t18 � 5.35, P � 0.001), respectively. The
amount of implicit learning at the end of the Rotation block
was not different between groups (t18 � 0.68, P � 0.51; Fig.
3C). Thus implicit learning appears to progress quite slowly,
and the final amount of learning did not differ as a function of
landmark orientation. This lack of a difference in implicit
learning also supports the lack of a difference in the aftereffect
(above) between groups, which was verified by comparing the
size of the final amount of implicit learning with the size of the
aftereffect (t18 � 0.66, P � 0.52).

In summary, the orientation of the landmarks appeared to
have only a minor effect on explicit learning and no significant
effect on implicit learning. Landmark orientation also appeared
to decrease the consistency of the reported aiming location
when the number of the landmark was fixed relative to the
workspace. This led to an increased probability of aim change,
and the magnitude of aim change was greater for participants
in the Fixed condition. Nonetheless, the explicit learning time
courses were very similar on average. Implicit learning was
relatively unaffected by landmark orientation. In the next
experiment, we investigated how explicit and implicit learning
vary as a function of the number of target locations.

Experiment 2: Number of Training Targets

All participants practiced reaching to the target(s) with
veridical feedback during the Baseline block to become famil-
iarized with the task. For the eight trials preceding the intro-
duction of the rotation (Baseline-Report block), participants
were also instructed to report where they planned to aim using
the numbered landmarks. In the One-Target group, 4 of 10
participants aimed to a location other than the green target.
Three of 10 and 1 of 10 participants aimed to a location other
than the green target in the Two-Target and Four-Target
groups, respectively. In all cases, this aiming strategy lasted
only for a few trials, and while most reported aiming locations

Fig. 4. Changes in explicit aiming during the Rotation block. A: probability of aim direction change during the verbal reporting phase for the Rotating and Fixed
landmark conditions. B: average change in aiming direction from trial n and trial n � 1 across subjects. C: win-stay/lose-shift: probability of aim change after
a successful or unsuccessful trial. Subjects in the Fixed condition are more likely to switch aiming strategies whether hitting or missing the target. Data were
averaged into 8-trial bins (epicycles), and shading represents the 95% confidence interval of the mean.
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were generally directed toward landmarks neighboring the
target, some participants aimed to numbered landmarks that
were far from the target. We suspect that this was most likely
due to a failure of the participant to understand the instruction
to report an intended aim location for the first few trials.
Nonetheless, despite having a different number of targets
between groups, there were no differences in the mean end-
point hand angles in the Baseline-Report block [F(2,27) � 1.03,
P � 0.37], measuring �4.91 � 11.2°, 4.46 � 9.55°, and 2.90 �
8.10° for the One-, Two-, and Four-Target groups, respectively
(see Fig. 6A).

After the Baseline-Report block, a 45° clockwise rotation
was introduced for 320 trials and all groups learned to counter
the rotation (Fig. 5A). Participants in the One-Target condition
rapidly began to counter the rotation. Within the first epicycle
of the Rotation block they changed their hand angle to 32.5 �
4.68° (t9 � 6.93, P � 0.001). While on average, participants in
the Two- and Four-Target conditions changed their hand an-
gles by 18.2 � 8.51° and 13.6 � 10.2°, respectively, these
changes were not significantly deviant from the Baseline-
Report block (Two-Target: t9 � 1.75, P � 0.11; Four-Target:
t9 � 1.51, P � 0.17). This lack of significant change can be
partially attributed to variance in the Baseline-Report block
and the first epicycle of the Rotation block. Nonetheless,
despite this variance, there was a near significant difference in

learning rates (when corrected) between groups during the first
epicycle [F(2,27) � 4.54, P � 0.02; Fig. 6A]. Post hoc t-tests
revealed significant differences between the One- and Four-
Target conditions (t18 � 3.00, P � 0.008) and marginal
differences (when corrected) between the One- and Two-
Target conditions (t18 � 2.50, P � 0.024). There was no
difference between the Two- and Four-Target conditions (t18 �
0.29, P � 0.77). However, by the last epicycle of the Rotation
block the One-, Two-, and Four-Target groups had fully
compensated for the rotation, measuring 46.1 � 2.12° (t9 �
8.61, P � 0.001), 44.4 � 1.41° (t9 � 7.88, P � 0.001), and
45.7 � 1.96° (t9 � 9.72, P � 0.001), respectively (Fig. 6A).
There were no significant differences in the amount of learning
between groups by the last epicycle [F(2,27) � 1.22, P � 0.31].
Thus participants in the One-Target condition displayed a
faster rate of learning, but all groups learned an equivalent
amount by the end of the Rotation block.

After the Rotation block, cursor feedback was absent and the
rotation was removed. In addition, the landmarks were erased
and participants were instructed to aim directly to the green
target. The One- and Two-Target groups presented significant
aftereffects, measuring 17.5 � 4.37° (t9 � 3.82, P � 0.004)
and 13.4 � 2.90° (t9 � 3.91, P � 0.004), respectively, while
the Four-Target group showed a marginal aftereffect of 8.37 �
3.91° (t9 � 2.18, P � 0.06). While aftereffect size appears to

Fig. 5. Experiment 2 learning time courses. A: end-point hand angle for One-Target, Two-Target, and Four-Target conditions. B: explicit learning: angle of aiming
location (verbally reported landmark). C: implicit learning: subtraction of aiming direction from end-point hand angle. Vertical dashed lines denote when the
rotation was introduced and removed. Movement epicycles represent the average of an 8-trial bin, and shading represents the 95% confidence interval of the mean.
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Fig. 6. Experiment 2 phases of interest for each block. A: average end-point hand angles for the Baseline-Report block epicycle and first and last epicycles of
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decrease as the number of targets increase, this remains only a
trend [F(2,27) � 2.81, P � 0.08; Fig. 6A].

Explicit and implicit learning. The time series depicting
participants’ reported aiming locations appeared to fluctuate
nonmonotonically during the Rotation block, displaying an
initial increase followed by a gentle decline with increased
training (Fig. 5B). To quantify this shape, we focused on the
first and last epicycles of the Rotation block, respectively.
Participants in the One- and Two-Target conditions reported
aiming to locations in a direction to counter the rotation within
the first epicycle, measuring 19.2 � 8.00° [t9 � 4.70, P �
0.001] and 16.4 � 9.76° [t9 � 3.29, P � 0.009], respectively
(Fig. 6B). Participants in the Four-Target condition displayed
marginal changes (when corrected) in aiming direction, mea-
suring 13.2 � 10.5° (t9 � 2.45, P � 0.04). Comparison of
these aiming directions between groups reveals no difference
in the rate of explicit learning [F(2,27) � 0.39, P � 0.68]. By
the last epicycle of the Rotation block, all groups continued to
report aiming to locations in a direction to counter the rotation.
One-, Two-, and Four-Target groups displayed aiming direc-
tions of 16.0 � 7.00° (t9 � 4.47, P � 0.002), 23.8 � 5.50° (t9 �
8.50, P � 0.001), and 27.8 � 5.60° (t9 � 9.30, P � 0.001),
respectively. Overall, there was a trend (when corrected) for
the final amount of explicit learning to increase with an
increasing number of target directions [F(2,27) � 3.67, P �
0.04; Fig. 6B]. It is worth noting that the One-Target group
shows a larger average aiming angle over the first epicycle
compared with the last epicycle, while the Two- and Four-
Target groups show the opposite trend. Thus participants
appear to rapidly adjust their aim and change it over the course
of training irrespective of the number of targets.

To estimate implicit learning, we subtracted the aiming
angle from the hand angle on each trial (Fig. 5C). In contrast
with overall learning, implicit learning appears quite slow and
monotonic. Only participants in the One-Target condition dis-
played rapid implicit learning during the first epicycle, mea-
suring 13.2 � 7.53° (t9 � 3.42, P � 0.008). Comparatively,
implicit learning was lesser for participants in the Two- and
Four-Target conditions [F(2,27) � 4.6, P � 0.02], measuring
only 1.86 � 4.5° (t9 � 0.75, P � 0.47) and 0.68 � 6.22° (t9 �
0.21, P � 0.83), respectively. Post hoc t-tests revealed only
marginal differences (when corrected) between the One- and
Two-Target groups (t18 � 2.47, P � 0.02) and the One- and
Four-Target groups (t18 � 2.50, P � 0.02), with no difference
between the Two- and Four-Target groups (t18 � 0.29, P �
0.77; Fig. 6C). By the last epicycle, implicit learning was
robust in the One-, Two-, and Four-Target groups, measuring
30.1 � 6.88° (t9 � 8.58, P � 0.001), 20.6 � 5.33° (t9 � 7.58,
P � 0.001), and 17.9 � 5.39° (t9 � 6.51, P � 0.001),
respectively. Between-group differences in the final amount of
implicit learning were significant [F(2,27) � 4.52, 0.02; Fig.
6C]. Post hoc t-tests revealed that this difference was marginal
(when corrected) between the One-Target group and the Two-
Target (t18 � 2.14, P � 0.04) and Four-Target (t18 � 2.74, P �
0.014) groups. There was no difference between the Two-
and Four-Target groups (t18 � 0.70, P � 0.49). These data
suggest that implicit learning is more robust and accumu-
lates at a rapid rate when training at fewer targets. While the
size of the final amount of implicit learning appears to be
greater than the size of the aftereffect, it was not significant
[F(2,27) � 0.68, P � 0.51].

In summary, overall learning was faster with fewer targets,
which was expected. Explicit and implicit learning varied to
some degree as a function of the number of targets. Increasing
the number of targets led to a slightly slower rate of explicit
learning and a slightly larger amount of explicit learning by the
end of the Rotation block. In contrast, increasing the number of
targets led to a slower rate and a smaller final amount of
implicit learning. We deduce that an apparent inverse relation-
ship between explicit and implicit learning yields the overall
learning curve. In the next experiment, we examined how
explicit and implicit learning change as a function of rotation
size.

Experiment 3: Rotation Size

All participants practiced reaching to eight targets with
veridical feedback during the Baseline block to become famil-
iarized with the task. Similar to experiments 1 and 2, partici-
pants were instructed to report their desired aiming location
before each movement for eight trials while continuing to reach
with veridical feedback (Baseline-Report block). The majority
of participants always reported aiming directly toward the
green target, but in each group several participants reported
aiming to other locations. Only 1 of 10 participants in the
Fifteen group reported aiming to a location other than the green
target, while 4 of 10 participants reported aiming to locations
other than the green target for some of the trials in each of the
Thirty, Sixty, and Ninety groups. Most of these aiming loca-
tions neighbored the green target and, overall, averaged �5°
away from it. For the Fifteen, Thirty, Sixty, and Ninety groups
end-point hand angles measured 2.69 � 3.00°, �3.13 � 8.27°,
�4.09 � 9.57°, and 2.63 � 4.69°, respectively, and these
values were not significantly different between groups [F(3,36) �
1.07, P � 0.38; see Fig. 8A]. We did not expect group-level
differences because different rotation sizes had yet to be
introduced.

After the Baseline-Report block, a rotation was introduced
for 320 trials with the magnitude differing by group. All
participants learned to counter the rotation during the Rotation
block (Fig. 7A), but the rate of learning appeared to be greater
as rotation magnitude increased. Over the first epicycle of the
Rotation block, participants in the Fifteen group did not sig-
nificantly adjust their hand angle (t9 � 0.35, P � 0.73),
measuring only 1.68 � 3.23°. In contrast, participants in the
Thirty and Sixty groups significantly adjusted their hand angle
during the first epicycle, measuring 8.10 � 4.48° (t9 � 2.38, P �
0.04) and 24.3 � 15.9° (t9 � 4.63, P � 0.001), respectively.
While the adjustment over the first epicycle was large for the
Ninety group (26.2 � 24.3°), it only trended toward signifi-
cance (t9 � 1.97, P � 0.08). These differences in learning rates
were nearly significant (when corrected) between groups
[F(3,36) � 3.30, P � 0.03; Fig. 8A]. Post hoc comparisons
failed to achieve significance when corrected for multiple
comparisons (P � 0.04). By the last epicycle of the Rotation
block, all groups learned to counter the rotation completely.
The final amount of learning for the Fifteen, Thirty, Sixty, and
Ninety groups measured 14.1 � 1.02° (t9 � 6.13, P � 0.001),
29.2 � 3.76° (t9 � 6.35, P � 0.001), 60.2 � 2.39° (t9 � 12.7,
P � 0.001), and 94.1 � 2.29° (t9 � 50.3, P � 0.001),
respectively (Fig. 8A). As expected, given that participants
learned to counter differentially sized rotations and that we
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focused our analyses on end-point hand angle, the final amount
of learning was different between groups [F(3,36) � 85.2, P �
0.001]. It is clear that each condition performed similarly by
the end of the Rotation block when the end-point hand angle is
normalized by the size of the rotation for each group (Fig. 7B).

Immediately after the Rotation block, cursor feedback was
absent, the rotation was removed, and the numbered landmarks

were erased. In addition, participants were instructed to aim
directly toward the green target. All groups displayed signifi-
cant aftereffects during the first epicycle of the No-Feedback
block, measuring 12.9 � 1.77° (t9 � 8.67, P � 0.001), 9.76 �
3.61° (t9 � 3.02, P � 0.01), 7.13 � 1.61° (t9 � 3.39, P �
0.008), and 8.91 � 2.29° (t9 � 3.04, P � 0.01). Despite
between-group differences in rotation magnitude, aftereffect

Fig. 7. Experiment 3 learning time courses. A: end-point hand angle for Fifteen, Thirty, Sixty, and Ninety degree rotation conditions. B: normalized learning:
end-point hand angle divided by the size of the rotation for each group. C: explicit learning: angle of aiming location (verbally reported landmark). D: normalized
explicit learning: average angle of aiming location divided by the size of the rotation for each group. E: implicit learning: subtraction of aiming direction from
end-point hand angle. F: normalized implicit learning: subtraction of aiming direction from end-point hand angle divided by the size of the rotation for each
group. Vertical dashed lines denote when the rotation was introduced and removed. Movement epicycles represent the average of an 8-trial bin, and shading
represents the 95% confidence interval of the mean.
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sizes were not significantly different between groups [F(3,36) �
0.47, P � 0.70; Fig. 8A].

Explicit and implicit learning. The time series of verbally
reported aiming locations provided an estimate of explicit
learning. Surprisingly, explicit learning appeared to scale to the
size of the rotation for most groups during the Rotation block
(Fig. 7C). Similar to experiments 1 and 2, we focused our
analyses on the first and last epicycles of the Rotation block to
provide measures of the rate and final amount of explicit
learning, respectively. Participants in the Fifteen group failed
to display large aiming angle shifts over the first epicycle of the
Rotation block, measuring �0.70 � 3.69° (t9 � 0.37, P �
0.72). In contrast, participants in the Thirty and Sixty groups
showed significant shifts in their aiming direction, measuring
8.66 � 6.32° (t9 � 2.68, P � 0.025) and 25.9 � 11.8° (t9 �
4.29, P � 0.002), respectively. While the Ninety group also
displayed a large shift in aiming direction, measuring 22.9 �
18.8°, the shift was marginal (when corrected, t9 � 2.39, P �
0.04). Between groups, the rate of explicit learning was sig-
nificantly different [F(3,36) � 4.36, P � 0.01; Fig. 8B]. Post hoc
t-tests revealed that explicit learning in the Sixty group was
significantly greater than in the Fifteen group (t18 � 4.2, P �
0.001), and comparisons between the other groups were only
marginally significant when corrected for multiple compari-
sons (P � 0.02). By the last epicycle of the Rotation block,
participants continued to report aiming to locations other than
the target location. For the Fifteen, Thirty, Sixty, and Ninety
groups, the mean aiming directions were 3.23 � 2.33° (t9 �
2.73, P � 0.02), 12.3 � 4.88° (t9 � 6.55, P � 0.001), 50.9 �
2.90° (t9 � 34.4, P � 0.001), and 84.4 � 2.82° (t9 � 58.7,
P � 0.001), respectively. These differences were significant
when compared between groups [F(3,36) � 449, P � 0.001;
Fig. 8B]. It is worth noting that participants in the Fifteen group
showed a small yet significant amount of explicit learning by
the end of the Rotation block. From Fig. 7C, it appears that
explicit learning for these participants peaked early in the
Rotation block and then decreased slowly over training. In-
deed, we searched for the epicycle with the maximum aiming
direction and found that there was a maximum of 10.3 � 1.78°,
which was significant (t9 � 11.3, P � 0.001). This peak was
highly variable between participants but on average occurred
around 54 � 42 trials into the Rotation block. All groups
engaged in aiming to locations other than the target throughout
the majority of the Rotation block, and the degree of aiming
appeared to scale with the size of the rotation, with more
explicit learning increasing relative to the size of the rotation
(see normalized results in Fig. 7D).

Similar to experiments 1 and 2, the implicit learning for all
groups gradually and monotonically increased during the Ro-
tation block. Interestingly, implicit learning over the first epi-
cycle was only marginally significant (when corrected) for the
Fifteen group (t9 � 2.65, P � 0.027), measuring 2.39 � 1.77°.
The Thirty, Sixty and Ninety groups did not show significant
implicit learning over the first epicycle (P � 0.47), measuring
0.75 � 3.08°, �0.19 � 5.48°, and 4.62 � 26.5°, respectively.
There were no between-group differences in the rate of implicit
learning [F(3,36) � 0.09, P � 0.96; Fig. 8C]. The lack of
significant implicit learning in the first epicycle appears to be
partially attributable to a large degree of variance during the
early phase of the Rotation block, perhaps due to an initial
failure to properly report aiming location. By the last epicycle

of the Rotation block, all groups displayed implicit learning.
The final amount of implicit learning measured 10.9 � 2.09°
(t9 � 10.2, P � 0.001), 12.9 � 2.86° (t9 � 8.84, P � 0.001),
9.30 � 3.22° (t9 � 5.66, P � 0.001), and 9.66 � 2.26° (t9 �
8.36, P � 0.001) for the Fifteen, Thirty, Sixty, and Ninety
groups, respectively. The final amount of learning did not
differ between groups [F(3,36) � 1.44, P � 0.25; Fig. 8C]
despite gross differences in rotation size. Finally, similar to
experiments 1 and 2, the final amount of implicit learning was
slightly larger than the size of the aftereffect, but this differ-
ence was insignificant [F(3,36) � 1.18, P � 0.218]. When
implicit learning was normalized by the size of the rotation,
implicit learning appeared to increase with smaller rotation
sizes (Fig. 7F).

In summary, we found that explicit learning scaled with
respect to the size of the rotation. Critically, however, implicit
learning did not—while aftereffects were slightly different
between conditions, their size was disproportional to the size of
the rotation. According to the size of the rotation, explicit
learning appears to change with reference to a fixed amount of
implicit learning to achieve an appropriately scaled overall
learning function.

DISCUSSION

It has become increasingly clear that multiple processes can
operate during sensorimotor learning (Smith et al. 2006), such
as reinforcement learning (Huang et al. 2011; Izawa and
Shadmehr 2011), use-dependent plasticity (Verstynen and Sa-
bes 2011; White and Diedrichsen 2010), hand path priming
(Jax and Rosenbaum 2009; van der Wel et al. 2007), and
explicit aiming strategies (Benson et al. 2011; Hegele and
Heuer 2010, 2013; Mazzoni and Krakauer 2006; Sulzenbruck
and Heuer 2009; Taylor and Ivry 2011). Explicit forms of
learning appear to make a greater contribution to sensorimotor
learning than previously thought (Keisler and Shadmehr 2010),
but the contribution of these processes is often measured with
posttests (Hegele and Heuer 2010, 2013) or inferred through
computational modeling (Taylor and Ivry 2011). Recently, our
lab developed a simple but novel methodology to assess the
evolution of explicit learning during training by having partic-
ipants verbally report an intended aiming direction on each trial
(Taylor et al. 2014). In addition, measuring a separate time
course of explicit learning allowed us to infer the time course
of underlying implicit learning (Taylor et al. 2014). This
demonstration showed that learning was the combined result of
a dynamic interplay between explicit and implicit forms of
learning and, importantly, that explicit learning played a major
role in the overall learning function.

In the present work, we sought to extend our previous
research by systematically manipulating dimensions of a visuo-
motor rotation task to observe how explicit and implicit learn-
ing were affected. We found that explicit learning was only
mildly dependent on the orientation of visual landmarks used
for verbal reporting, that it increased with the number of
training targets, and that it scaled with the size of an imposed
rotation. The flexibility of explicit learning was in contrast to
the relative rigidity of implicit learning, which was consistent
regardless of landmark orientation and rotation size and only
modestly decreased with an increasing number of targets. The
strong contribution of explicit learning and relatively weak
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contribution of implicit learning challenge prior interpretations
and principles regarding implicit learning drawn from visuo-
motor rotation tasks.

Explicit and Implicit Learning Independent of Visual Cues

To assess participants’ explicit aiming strategies in our prior
and present work, we included visual landmarks in the work-
space display to allow participants to verbally report their
aiming direction on each trial. We settled on this particular
methodology as opposed to having participants respond by
using a visually displayed radial line connecting the start
position to the target, which has been used in other studies
(Hegele and Heuer 2010, 2013), in order to decrease the total
trial time. However, it remains possible that visual landmark
orientation provides a contextual cue or prime that could bias
reported aiming directions. Indeed, prior work from our lab
concerning generalization suggests that visual cues can
strongly bias the degree of generalization (Taylor et al. 2013).

In experiment 1, we set out to test whether the orientation of
numbered aiming landmarks biases explicit aiming strategies.
We compared two conditions in which the numbers either
rotated with the target on each trial or remained fixed with
respect to the workspace. The time series of verbally reported
aiming landmarks were not radically different between these
conditions. On average, reported aiming directions in the Fixed
condition converted to a slightly smaller angular deviation
from the target compared with the Rotating condition, but this
was not significant. Additionally, participants’ aiming direc-
tions in the Fixed condition were less consistent across trials
and more apt to change from one trial to the next. These results
make intuitive sense since the task itself forced participants to
change the number marking a particular aiming direction from
one trial to the next. It is unlikely that participants could
accurately recall the landmark that was appropriate or a pre-
viously reported landmark for a given target location since they
would not revisit that target until they completed reaching to all
other target locations. This raises the question of how partici-
pants were choosing to aim to a particular numbered landmark
on each trial. One possibility is that participants were learning
to do a mental addition or subtraction from the number that was
beneath the target to obtain an appropriate number. In a
postexperiment questionnaire, we asked participants whether
they were using any kind of mental addition or subtraction to
determine their aiming location and only three participants
reported using mental addition in the Fixed condition. An
alternative possibility is that participants ignored the numbers
entirely and simply counted over by a particular amount;
however, participants did not report using this metastrategy,
either. More likely, participants were learning an abstracted
angular deviation and selecting the number that approximated
that angular deviation. Indeed, this is what other experiments
have found when testing for explicit strategies, in addition to
their generalizability across the workspace, suggesting that
they are highly flexible (Hegele and Heuer 2010, 2013; Heuer
and Hegele 2008, 2011).

It appears that the time course of explicit learning is not just
a function of visual landmarks used to report the aiming
strategy. More generally, it is likely that participants use
aiming strategies even when visual landmarks are not present,
by forming and updating a spatial representation of a given

environmental perturbation that may dynamically interact with
implicit processes over time to maximize compensation and
minimize cognitive load. In our previous work, we found very
similar rates of learning during the Rotation block between
conditions with landmarks and without landmarks (Taylor et
al. 2014). Moreover, aftereffects were similar between condi-
tions with and without landmarks and were approximately half
the size of the rotation, suggesting that implicit learning pro-
ceeded in a similar fashion regardless of whether participants
were verbally reporting an aiming location on each trial (Tay-
lor et al. 2014). In the present experiment, we see similar
implicit learning curves during the Rotation block and simi-
larly sized aftereffects in the No-Feedback block, providing
further evidence that implicit learning proceeds independently
from explicit learning.

Number of Training Targets

In experiment 2, we varied the number of training targets
between groups and found that as the number of targets
increased the amount of explicit learning increased while
implicit learning decreased. It could be expected that formu-
lating an explicit aiming strategy is more difficult with multiple
targets, particularly if participants were attempting to imple-
ment a strategy in Cartesian coordinates, considering that the
perturbation is in polar coordinates. This is especially true for
cases of end-point feedback, where there is little information to
distinguish between a translational shift of the cursor and a
rotation of the cursor. In fact, with end-point feedback, partic-
ipants show generalization patterns that are more consistent
with a translational shift than a rotation (Taylor et al. 2013;
Taylor and Ivry 2013). For example, the appropriate strategy
for the 0° target direction with a clockwise rotation requires
choosing an aiming landmark that is upward, but when switch-
ing to the 180° target direction the appropriate landmark would
need to be downward to counter the rotation. However, par-
ticipants showed similar rates of explicit learning regardless of
the number of target locations, suggesting that they quickly
figured out that the appropriate aiming strategy was in polar
coordinates. Moreover, previous experiments examining strat-
egy generalization have found that strategies are appropriate
for a rotation when provided with online feedback (Heuer and
Hegele 2008, 2011).

In contrast, implicit learning decreased as the number of
targets increased, which may be expected since increasing the
number of targets reduces the number of repeated training trials
at any single target location. Furthermore, given the limited
breadth of generalization observed in visuomotor rotation tasks
(Krakauer et al. 2000; Taylor and Ivry 2013), implicit learning
at each target benefits little from training at other targets when
their angular separation is large, as in our study. Considering
that with an increased number of targets there is increased time
between each movement to the same target location, it is
possible that learning decays between repetitions at a particular
target location. To add to this point, it has recently been shown
that there are at least two timescales of forgetting in implicit
learning: a temporally labile and a temporally stable compo-
nent (Brennan et al. 2012; Hadjiosif and Smith 2013). The time
constant for the temporally labile component is �20 s (Bren-
nan et al. 2012; Hadjiosif and Smith 2013). Therefore, as the
time between repetitions in a particular direction increases,
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only the stable component is observed, which makes a signif-
icantly smaller contribution to overall implicit learning. In-
deed, we analyzed the intertrial time between repetitions at the
same target direction and found that the intertrial time steadily
increased from �11 s in the One-Target condition to 20.5 s in
the Two-Target condition and to 32 s in the Four-Target
condition. Consequently, not only did the number of trials
involving a single target location decrease as the number of
targets increased, but the time between repetitions also in-
creased, which could explain the corresponding decrease in
implicit learning.

It is worth noting that implicit learning in the One-Target
condition was incomplete by the end of the Rotation block.
Implicit learning quickly rose to �25° within the first quarter
of training in the Rotation block but slowed over the last three
quarters of the Rotation block, reaching only a semiasymptote
of �30°. We computed the average slope of increase over the
last 100 trials of the Rotation block, and it was only 0.003° per
trial, which would require �5,000 trials for implicit learning to
fully compensate for a 45° rotation, assuming that this rate is
time invariant. This result is remarkable given the rapid rate of
implicit learning during the early phase of learning a rotation,
suggesting that there may be a deceleration in the rate of
implicit learning over continued training in the Rotation block.
Hence, it remains an open question as to whether it is possible
for implicit learning to fully compensate for a 45° rotation.

Flexibility of Explicit Learning but Not Implicit Learning

A commonly held assumption is that explicit learning only
contributes to learning when visual errors are large. Most
visuomotor rotation or prism adaptation studies introduce a
relatively large rotation (30° or greater) abruptly, and partici-
pants are generally aware of a decrease in performance—
although they may not be aware of the rotation per se (Bedford
1999; Kagerer et al. 1997; Klassen et al. 2005; Mazzoni and
Krakauer 2006; Michel et al. 2007). When visuomotor rota-
tions are introduced gradually, participants generally do not
report being aware of the perturbation (Kagerer et al. 1997;
Klassen et al. 2005; Saijo and Gomi 2010; Taylor and Ivry
2011). These studies suggest that implicit learning proceeds
independent of articulable awareness and that, for small rota-
tions, explicit learning would make little contribution.

In experiment 3, we sought to quantify the relative contri-
bution of explicit and implicit learning as a function of visual
error size by manipulating the size of the rotation between
groups. We found that explicit learning scaled with the size of
the rotation and that participants reported aiming directions
throughout learning even when the rotation was relatively
small (15°). Curiously, implicit learning did not proportionally
scale with the size of the rotation; the rate and final degree of
implicit learning were statistically indistinguishable despite the
groups having dramatically different sizes of rotations. In
addition, aftereffects were quite similar between groups, rang-
ing between 8° and 12°, confirming that implicit learning was
disproportional to error size. These results depart from previ-
ous work that showed relative scaling (Thomas and Bock
2012), but in prior studies the rotation was simply removed at
the onset of a washout block and participants were not in-
structed to stop aiming. Under these conditions, participants
would be expected to continue to reach in the same manner as

on the last few trials of the Rotation block, making it inevitable
that the reach angles in the Washout block would be closer to
the size of the rotation. In our present and previous work
(Taylor et al. 2014), we demonstrate that the true size of the
aftereffect can only be observed by instructing participants to
aim directly to the target without cursor feedback. Moreover,
the size of the aftereffects closely matches the extent of
implicit learning. This provides two measures that reveal that
implicit learning is disproportionate to rotation size.

The insensitivity of implicit learning is surprising given the
number of studies that have shown proportional learning when
perturbations were consistent (Fine and Thoroughman 2007;
Scheidt et al. 2001; Semrau et al. 2012); insensitivity to error
size is only observed when perturbations were infrequent or
inconsistent (Fine and Thoroughman 2006; Semrau et al. 2012;
Wei and Kording 2009). Additionally, this error proportional-
ity has been elegantly described with recursive learning models
(Fine and Thoroughman 2007; Scheidt et al. 2001; Thorough-
man and Shadmehr 2000). Recently, however, studies that
provide participants with an explicit strategy have observed
that implicit learning (or angular drift) appears to reach a
maximum or asymptotic value that falls short of the full size of
the rotation (Mazzoni and Krakauer 2006; Taylor and Ivry
2011). Another recent study has shown that when visual error
is clamped such that the angular deviation of the cursor is
constant regardless of angular hand position, implicit learning
proceeds similarly regardless of error size and participants are
relatively unaware of its operation (Morehead et al. 2014).
Given these conditions, implicit learning appears to be sensi-
tive to error direction but not error magnitude (Morehead et al.
2014).

These studies, in conjunction with our present study, suggest
that previous reports of error proportionality have been ob-
served only when explicit and implicit learning are conflated.
Therefore, pure implicit learning may be less sophisticated
than previously thought; sensitivity to error size may be an
exclusive feature of explicit learning, or it may be that the joint
operation of implicit learning and explicit learning is necessary
to reduce error in a proportional manner. However, it seems
unlikely that explicit learning itself is entirely responsible for
error proportional learning, considering that the early phase of
explicit learning is highly variable and often goes in the wrong
direction to counter the rotation. Only during the later phase of
the learning time course does explicit learning appear stable
and responsive to an increase in implicit learning. Explicit
learning in the absence of implicit learning has yet to be
systematically examined in a visuomotor rotation task. Future
experiments are necessary to determine the source of error-
proportional learning, whether it arises from a single process
operation or the combination of a number of processes. It is
possible that only the temporally labile component of implicit
learning is sensitive to error magnitude, while the temporally
stable component of implicit learning is only sensitive to
direction.

Finally, the similar extent of implicit learning despite large
changes in explicit learning suggests that implicit learning
operates with a notable degree of independence from explicit
learning. Previous studies that have provided participants with
an explicit aiming strategy to counter a rotation have observed
that participants initially have minimal target error but, over
time, their hand drifts in the direction of the strategy such that
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directional error increases (Mazzoni and Krakauer 2006; Tay-
lor et al. 2010; Taylor and Ivry 2011). This has been ascribed
to the continued operation of a forward model based upon the
difference between aiming direction and cursor feedback, not
target error (Mazzoni and Krakauer 2006; Taylor and Ivry
2011). With continued training, the drift in hand direction
eventually reverses, and this reversal has been attributed to
changes in participants’ aiming strategies, not implicit learning
(Taylor and Ivry 2011). These studies, in conjunction with our
present findings, suggest that implicit learning may indeed
operate independently from explicit learning (i.e., aiming strat-
egies). However, it does not appear that explicit and implicit
learning are strictly independent, since explicit aiming strate-
gies appear to change in response to continued implicit learn-
ing. It is possible that explicit learning responds appropriately
to implicit learning, but not vice versa, suggesting a unidirec-
tional dependency. Additionally, it is unknown whether this
interaction is immediate, with implicit learning directly in-
forming explicit learning, or indirect, with explicit learning
responding to changes in target error solely as an outcome of
implicit learning.

Conclusions

In our task, explicit learning is manifested as selecting
aiming strategies to restore task performance. Utilizing aiming
strategies to counter visuomotor errors is not a newly described
phenomenon but has been described in previous prism adap-
tation studies (Martin et al. 1996; Redding and Wallace 1996;
Weiner et al. 1983) and colloquially in the practice of “Ken-
tucky windage,” which refers to the strategy of aiming to the
side of a target to compensate for wind during rifle shooting.
Only recently, however, has their contribution been quantified
through postexperimental tests (Hegele and Heuer 2010, 2013)
or on a trial-by-trial basis (Taylor et al. 2014). In this study, we
find that explicit learning appears to be a fundamental process
contributing to overall learning in a visuomotor rotation task,
working in tandem with implicit learning to counter visuomo-
tor rotations under a variety of task conditions. We propose
that future experiments will need to include tests of explicit
learning to thoroughly understand learning in a visuomotor
rotation task.
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