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Abstract
Structural learning is a phenomenon characterized by faster learning in a new situation that shares features of
previously experienced situations. One prominent example within the sensorimotor domain is that human participants
are faster to counter a novel rotation following experience with a set of variable visuomotor rotations. This form of
learning is thought to occur implicitly through the updating of an internal forward model, which predicts the sensory
consequences of motor commands. However, recent work has shown that much of rotation learning occurs through
an explicitly accessible process, such as movement re-aiming. We sought to determine if structural learning in a
visuomotor rotation task is purely implicit (e.g., driven by an internal model) or explicitly accessible (i.e., re-aiming). We
found that participants exhibited structural learning: following training with a variable set of rotations, they more quickly
learned a novel rotation. This benefit was entirely conferred by the explicit re-aiming of movements. Implicit learning
offered little to no contribution. Next, we investigated the specificity of this learning benefit by exposing participants to
a novel perturbation drawn from a statistical structure either congruent or incongruent with their prior experience. We
found that participants who experienced congruent training and test phase structure (i.e., rotations to rotation) learned
more quickly than participants exposed to incongruent training and test phase structure (i.e., gains to rotation) and a
control group. These results suggest that structural learning in a visuomotor rotation task is specific to previously
experienced statistical structure and expressed via explicit re-aiming of movements.
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Introduction
Ebbinghaus coined the term “savings” to characterize

the phenomenon of faster relearning of material despite

its apparent forgetting (Ebbinghaus, 1885). Structure
learning is a related but distinct phenomenon; whereas
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Significance Statement

Structural learning is a meta-learning phenomenon evidenced by an accelerated learning rate for novel
tasks sharing the same statistics as the training task. Previous investigations suggest that this effect is
driven by the implicit extraction of invariant task features. However, this interpretation contrasts with recent
research showing that an explicitly accessible process, such as movement re-aiming, accounts for most of
rotation learning. We investigated (1) whether structural learning in a visuomotor rotation task was explicitly
accessible and (2) whether structural learning was specific to the trained perturbation structure or ex-
pressed via a general aiming heuristic. Our results suggest that structural learning in a visuomotor rotation
task is specific to previously experienced statistical structure and expressed via movement re-aiming.
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savings operates over time (Ebbinghaus, 1885) and within
the same input-output mapping (Harlow, 1949; Ashby,
1960), structural learning operates over parameter space
and within a class of mappings (Braun et al., 2010). In-
stead of increasing learning rate through consolidation,
structural learning abstracts relationships through experi-
ence within the parameter space of a task, which reduces
the dimensionality of the hypothesis space.

Imagine a novice archer attempting to hit a bullseye on
a windy day. Initially, she may not know which set of
actions to take to counter the crosswind–whether she
should aim side-to-side or up-and-down (Fig. 1A)–but
with practice she will learn to aim in the opposite direction
and with sufficient magnitude to counter the wind (Fig.
1B). From this experience, she can also extract a general
principle: she should always aim in the direction opposite
to the wind. Her learning rate on future windy days will be
dramatically faster because she no longer must search
the entire space of potential actions.

This example reflects a form of structural learning in
action: the ability to speed learning for novel, yet isostruc-
tural tasks by abstracting covariances from sensory in-
puts to constrain the space of potential solutions (Braun
et al., 2010). Indeed, structural learning has been shown
to afford faster learning in a visuomotor adaptation task
(Braun et al., 2009), which induces an angular mismatch
between hand and cursor movements (Krakauer, 2009).
To probe structural learning, Braun et al. (2009) trained
participants to overcome rotations that changed in direc-
tion and magnitude. Critically, they changed the rotation

every eight trials and drew each rotation from a zero-
mean distribution to prevent learning accumulation. Fol-
lowing this training phase, participants were exposed to a
novel, consistent rotation. These participants were faster
to counter this rotation relative to a control group that
never experienced a perturbation and a “random” group
exposed to a set of combined perturbations.

From a computational perspective, this benefit may arise
from the identification of the covariance structure of task
parameters, which constrains the dimensionality of the hy-
pothesis space and consequently speeds the search for a
solution. Consider the transformation matrix in Equation 1,
which relates cursor movements to hand movements. The
goal of learning is to fully parameterize the matrix (a, b, c,
d), but the structural learning perturbation schedule pre-
vents this because the rotation direction and magnitude
change throughout training, overwriting the matrix param-
eters. Instead, structural learning exploits the relationship
between the off-diagonal terms of the rotation transfor-
mation matrix (Eq. 2). The abstraction of this relationship
(Eq. 3) collapses the dimensionality of the search space,
speeding the acquisition of the parametric relationship
between hand and cursor movements within the trained
class, which affords faster learning (Fig. 1C).
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c d ��xhand

yhand
� (1)
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This abstraction is presumed to be implicit (Genewein
et al., 2015) and has been represented within an optimal
feedback control framework as the result of an adaptive
internal model (Braun et al., 2010). However, this interpre-
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Figure 1. The concept of structure learning in action. A, Unconstrained action space. Before experiencing perturbations, the action
space is unbiased. B, Action space constrained by archery practice. With experience, an archer will learn the general principle that
she should aim in the opposite direction and with sufficient magnitude to counter an array of wind velocities. Thus, the action space
should be constrained by azimuthal changes in aim. C, Action space constrained by rotations. Likewise, when participants experience
rotational perturbations, they learn to exploit the off-diagonal terms of the rotation matrix. Thus, the action space should be
constrained by searches along a ring.
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tation stands in contrast to a recent series of findings
demonstrating that explicitly accessible re-aiming pro-
cesses constitute the majority of learning (Heuer and
Hegele, 2008; Hegele and Heuer, 2010; Taylor et al., 2014;
Bond and Taylor, 2015; McDougle et al., 2015; Brudner
et al., 2016; Day et al., 2016; Poh et al., 2016). We
previously found that explicit re-aiming composed the
flexible component of performance across a range of
rotation magnitudes while implicit recalibration exhibited
a stereotyped response (Bond and Taylor, 2015). Further-
more, Morehead and colleagues showed that savings, a
related phenomenon, was entirely the result of explicit
re-aiming (Morehead et al., 2015). Altogether, there is
ample motivation to further investigate whether structural
learning can be expressed at an explicit level.

In experiment 1, we tested whether explicit re-aiming
could contribute to the phenomenon of structural learning
by combining a recently developed technique to measure
re-aiming behavior with the structural learning perturba-
tion schedule from Braun et al. (2009; Fig. 2). We found
that a variable rotation schedule drastically improved the
learning rate for a novel rotation and that explicit re-aiming
was entirely responsible for this effect. In experiment 2, we
investigated whether re-aiming during the test phase was
sensitive to the trained perturbation structure or more con-
sistent with a generalized heuristic. We discovered that par-
ticipants only showed learning rate benefits when training
and test phase perturbations were drawn from the same
structure, suggesting that rotation structure learning is ac-
complished via structure specific re-aiming.

Figure 2. Reporting methods and variable perturbation schedules. A, In experiment 1, participants reported their aim using a circular
array of numbered landmarks which rotated with the target location such that the numbers 1 and �1 were adjacent to all target
locations. B, Perturbation schedule. The exposure phase trained participants on the rotation structure using a zero-mean rotation
sequence drawn from a uniform distribution. In the highlighted test phase, all participants experienced a novel rotation of 60°. C, In
experiment 2, participants reported their intended reach endpoint by tapping a touch screen with the left hand. A red crosshair marked
the tapped location and participants could tap anywhere on the screen. D, Incongruent perturbation schedule. The basic experimental
design for experiment 2 largely reflects that of experiment 1. Participants in the gain group experienced radial perturbations during
the exposure phase, which were incongruent with the structure of the test perturbation (60° rotation). For the gain group, all phases
except the test phase show the radial perturbation relative to the target, such that negative values indicate a negative scaling of cursor
feedback and positive values indicate a positive scaling of cursor feedback (left y-axis). Because the test phase perturbation is a
rotation, the perturbation for that phase is plotted as an angle (right y-axis).
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Materials and Methods
Participants

Eighty-two participants (18.1–22.8 years, 39 female)
were recruited from the research subject pool maintained
by the Psychology Department at Princeton University or
from the local community. One participant was excluded for
failure to follow task instructions. Each participant received
either course credit or $12 for participation. All participants
were right-handed, verified using the Edinburgh Handed-
ness Inventory (Oldfield, 1971), and reported normal or
corrected-to-normal vision. Our research protocol was
approved by the Princeton University Institutional Review
Board and each participant gave informed consent before
participation.

Experiment 1 procedures
Before beginning each trial, the participant was re-

quired to position their hand at the center of a digitizing
tablet while holding a digitizing pen (Intuos 3, Wacom).
The tablet sampled movement trajectories at 100 Hz.
Participants were capable of moving anywhere within the
tablet active space (measuring 32.5 � 20.3 cm). Visual
feedback was presented by a 43.18 cm, 1024 � 768 pixel,
60 Hz LCD monitor (Dell) that was horizontally mounted
24 cm above the tablet, occluding vision of the limb. To
aid participants in finding the center of the tablet quickly,
a circle either expanded or contracted with the radial
distance of the participant’s hand position from the center
of the tablet. Once the participant’s hand was 6 mm from
the center of the start position (diameter, � � 5 mm), a
white circular cursor (� � 4 mm) appeared. After main-
taining the start position for 1 s, a green circular target
appeared (� � 7 mm) at one of four target locations
(cardinal axes: 0°:90°:270°) along a virtual ring with a
radius of 9 cm. Each target location was pseudorandomly
selected such that no target location repeated within an
epoch of four trials and each participant received a dif-
ferent sequence of targets.

Participants were instructed to make a fast “shooting”
movement toward the target location. Cursor feedback
was provided throughout the reach and once the partici-
pant’s hand position exceeded 9 cm from the start point,
the cursor turned red and its position was frozen, remain-
ing on-screen for 1.5 s. If the movement duration ex-
ceeded 0.4 s, participants received an auditory warning
(“too slow”) to encourage ballistic reaching movements. If
the cursor position overlapped the target position, a
pleasant chime sounded and the participant was awarded
one point; otherwise, a harsh buzz played and zero points
were awarded. Participants received a 5-s reminder of
their absolute score and the proportion of points awarded
after each 40 trial interval. The experiment was controlled
by custom software written in Python (http://python.org)
running on a laptop computer (Macbook Pro, Apple).

For certain phases of the experiment (see the final
paragraph of this section), the visual workspace also in-
cluded a virtual ring of numbers ranging from 1 to 31 and
�1 to �31, with each number spaced 5.625° apart (Fig.
2A). These numbered landmarks rotated with the target
position such that if a target were presented at a 90° angle

(straight ahead), the number 1 would be presented at
95.625° and the number �1 would be presented at
84.375° (relative to the positive horizontal axis). Directly
before the beginning of the aiming section of the baseline
phase, participants were instructed: “You may have no-
ticed that there were little numbers flanking the target. I
would like you to tell me, before moving, the number that
you think you should aim toward to get the cursor on the
target. So if you think that you should aim directly at the
target, then please say ‘green.’ But if you think that you
should aim somewhere else to get the cursor on the
target, please tell me what that number is.”

If a participant failed to report their aim, the experi-
menter reminded the participant to please continue to
report the number to which they were aiming before
moving. The experimenter coded the missed report for
such trials as not-a-number (NaN), which accounted for
0.23% of trials.

Experiment 1 conformed to the following block format.
First, participants made direct reaching movements to the
targets with online cursor feedback to become familiar-
ized with the basic task (first half of baseline phase: eight
trials). Then, consistent with our factorial design (see final
paragraph of this section), half of the participants were
trained to verbally report their aiming location using the
numbered landmarks on the screen (Fig. 2A) before mov-
ing on each trial (second half of baseline phase: eight
trials). Next, also according to our factorial design, half of
the participants were exposed to a pseudorandom per-
turbation schedule which consisted of rotations that var-
ied in direction and magnitude (exposure phase: 304
trials). Each participant received a unique perturbation
schedule.

Following the procedure used by Braun et al. (2009), a
particular rotation was experienced for eight trials before
changing to a new, pseudorandomly selected rotation.
The rotations were drawn from a uniform distribution
ranging from �90 to 90°, excluding 0°, and were chosen
to have a zero mean across the exposure phase to pre-
vent the accumulation of learning (Davidson and Wolpert,
2003). We also excluded rotation sizes within 10° of the
test phase rotation (60°) and its inverse (�60°). We ex-
cluded these rotation values to isolate our measure of
structural learning from visuomotor savings. Figure 2B
illustrates an example perturbation schedule during the
exposure phase. To washout the potential effect of any
learned bias during the exposure phase, veridical feed-
back was restored (feedback-washout phase: 40 trials).
Following this phase, participants experienced a counter-
clockwise 60° rotation (test phase: 80 trials). Finally, to
measure aftereffects, all cursor feedback was removed
and participants were instructed to reach directly to the
target (washout phase: 16 trials). If participants were
asked to report their aiming, the virtual ring of numbers
was also erased during the washout phase.

Forty participants were divided equally into four groups
according to a 2 � 2 factorial design with rotation struc-
ture exposure (structure) and verbal reporting (report) as
factors. We included report as a factor to determine if the
reporting procedure biased structural learning. The
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structure-report group experienced pseudorandom rota-
tions during the exposure phase and reported their aiming
location throughout the baseline (second half), exposure,
feedback-washout, and test phases. Participants in the
nostructure-report group did not experience perturba-
tions during the exposure phase, but they were instructed
to report their aiming locations. The structure-noreport
group experienced rotational structure during the expo-
sure phase, but never reported their aiming locations and
the virtual ring of numbers was absent from the work-
space. Finally, the nostructure-noreport group did not
experience structure or report their aiming location at any
point during the experiment.

Experiment 1 analyses
Statistical analysis and data visualization were con-

ducted using custom scripts written in R (R Foundation for
Statistical Computing, RRID:SCR_001905) and MATLAB
(MathWorks, RRID:SCR_001622). Kinematic data and
aiming data were transformed from Cartesian to polar
coordinates and rotated to a common axis such that the
target was positioned at 0° (directly to the right). We
operationalized kinematic performance using endpoint
hand angle, which measures the angle between the target
and the endpoint of the reach trajectory. Positive angles
indicate a counterclockwise deviation from the target and
negative angles indicate a clockwise deviation from the
target. We quantified explicit learning by multiplying the
verbally reported landmark by the spacing of the num-
bered landmarks (5.625°) for each trial. Implicit learning
was computed by subtracting aiming position from the
endpoint hand angle for each trial.

To test for the presence of baseline differences in kine-
matic performance across groups, we submitted the av-
erage endpoint hand angles over the last eight trials
(epoch) of the baseline phase to a two-way ANOVA with
factors of structure and report. To examine how respon-
sive participants were to the variable perturbation sched-
ule, we cross-correlated endpoint hand angles with the
exposure phase solution for each participant to find the
lag between time series that maximized their correlation.
All correlation coefficients are calculated using the opti-
mal lag for a given participant. We used a maximum lag of
eight trials to reflect the length of each perturbation epoch
during the exposure phase. We report the median and
interquartile range (IQR) of the optimal lag for each group
and compare correlations between groups exposed to
structure using a two-sample t test. For the group that
reported their aim during structure training (the structure-
report group), we also report the median lag and mean
correlation for explicit re-aiming and implicit learning.

To quantify how accurately participants opposed the per-
turbation series, we regressed the endpoint hand angle on
the solution, using the slope of the linear fit as a proxy for
reach accuracy in the exposure phase. For the structure-
report group, we also regressed explicit re-aiming and im-
plicit learning on the solution. We assumed that the closer
the slope coefficient was to a value of 1, the better the
participant tracked the exposure phase solution. To deter-
mine if the slopes for a particular group were significantly

different from zero, we conducted one-sample t tests. We
conducted a two-sample t test to assess whether there were
significant differences between endpoint-hand-angle-
solution slopes for each group that experienced structural
training (structure-report and structure-noreport).

To ensure that the feedback-washout phase removed
any bias that could have been induced by the exposure
phase, we submitted the endpoint hand angles in the last
epoch of the feedback-washout phase to a two-way
ANOVA with factors of structure and report. Likewise, for
the reporting groups, we tested whether any aiming bias
induced by the exposure phase was removed by con-
ducting a two-sample t test on aiming angles associated
with the last epoch of the feedback-washout phase.

Our key dependent measure was learning rate in the test
phase. To determine if the reporting procedure affected
structural learning, we submitted the average endpoint hand
angles over the first eight trials, our proxy for learning rate, to
a two-way ANOVA with factors of structure exposure and
reporting. Next, we sought to determine if changes in end-
point hand angle are attributable to changes in explicit re-
aiming processes or implicit learning. Because explicit and
implicit learning values are correlated, we chose to conduct
a multivariate ANOVA (MANOVA) with a single factor of
structure exposure, using explicit learning and implicit learn-
ing values during the first epoch of the test phase as our
dependent variables.

Finally, to quantify aftereffects, we first subtracted av-
erage endpoint hand angles during the last epoch of the
baseline phase from the average endpoint hand angles
over the first eight trials of the no-feedback-washout
phase for each participant. This preprocessing step al-
lowed us to remove the influence of kinematic bias from
our assessment of aftereffects. We then submitted these
baseline-subtracted endpoint hand angles to a two-way
ANOVA with factors of reporting and structure exposure.
Because forward model adaptation quickly deteriorates
when feedback is absent (Kitago et al., 2013), we only
used data collected during the first epoch of this phase.

Note that we chose to quantify learning and aftereffects
as performance averaged over eight trials instead of fitting
an exponential function because we know that explicit
re-aiming is highly nonmonotonic (Taylor et al., 2014;
Bond and Taylor 2015) and because we know that expo-
nential functions may not be representative of individual
learning curves (Gallistel et al., 2004). This approach is
consistent with previous studies using a similar reporting
technique (Taylor et al., 2014; Bond and Taylor, 2015;
Anglin et al., 2017).

Except where noted, we describe data using the mean
and standard deviation. We consider comparisons yield-
ing p � 0.05 to be statistically significant and compari-
sons yielding p � 0.10 to be marginally significant.
Superscript letters associated with analyses correspond
to the statistical tests shown in Table 3.

Experiment 2 procedures
Similar to experiment 1, participants performed center-

out reaching movements by sliding a digitizing pen across
a digitizing tablet. The distance to the target was de-
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creased to 7 cm to accommodate gain perturbations. The
visual display was presented by a 1024 � 768 pixel, 60
Hz, touchscreen-compatible monitor (Acer) mounted 23.5
cm above the tablet. At the start of a trial, participants
used radial feedback to bring their hand to the starting
location (� � 6 mm). After keeping their hand at the start
position for 0.5 s, a gray target (� � 8 mm) was displayed
7 cm from the start position. The targets could appear in
one of eight locations (0°:45°:315°) and were pseudoran-
domized such that no target location was repeated until
all targets were visited.

To assess adaptation to gain perturbations, partici-
pants in experiment 2 were required to solve the radial
and angular component of the task to terminate the cursor
within the target region (i.e., “point-to-point” movements).
This meant that if the cursor was unperturbed, then par-
ticipants would need to reach to the target distance and
the target angle for a successful trial. If the cursor was
perturbed by a gain, then participants would need to
oppose the radial component of the perturbation but also
match the target angle to terminate the cursor within the
target region. For a successful rotation trial, participants
would need to oppose the angular component of the
perturbation but also match the target distance. Note that
because it was necessary to have participants perform
point-to-point movements to accommodate gain pertur-
bations, these movement requirements are different from
the shooting movements used in experiment 1. Cursor
feedback (� � 5 mm) was removed at the start of the
movement, which was defined as beginning once the
hand was 9 mm from the start position. Feedback, in
the form of cursor position, was restored at the end of the
reach, which was defined as when the reach speed fell
below 7 cm/s, and displayed for 1 s. If the cursor position
overlapped the target position, the participant heard a pleas-
ant chime and the target turned from gray to green. An
unsuccessful trial was met with a buzz and the gray target
turned blue. Then, the screen was erased and participants
were required to find the start point using radial feedback to
begin the next trial, as described above.

Another difference between experiments 1 and 2 con-
cerned how participants reported their explicit aiming
location. In experiment 2, participants were asked to in-
dicate where they planned to move to terminate their
cursor within the target by tapping an intended reach
endpoint on a touchscreen monitor using their left hand
(Fig. 2C). Importantly, because reporting in this experi-
ment was unconstrained, this measurement of explicit
aiming yielded higher resolution data than the verbal re-
porting method in experiment 1. Additionally, the absence
of numbers to demarcate potential reporting locations
allowed for a less cued assessment of aiming behavior.
After the participant tapped the screen, a red crosshair
marked the tapped location and remained on-screen for 1
s. Participants then rested their left hand on the table,
away from the visual workspace. Additionally, while ex-
periment 2 followed the same blocked schedule as in
experiment 1, experiment 2 deviated from the trial se-
quence in experiment 1 in two ways. First, because touch-
screen reporting takes more practice, the number of trials

in the baseline phase was increased from 16 to 32. Sec-
ond, because touchscreen reporting increases inter-trial
time, the length of the exposure phase was decreased
from 304 to 240 trials.

Immediately before the onset of the first aiming trial, the
experimenter gave the following instructions: “So far, the
cursor has followed your hand position. At some point in
the experiment, we may manipulate the relationship be-
tween your movement and the cursor. Therefore, a direct
aim to the target may not be effective. You may need to
aim to another location to get the cursor on the target. So,
I’d like you to tap the screen wherever you think that you
should move your hand to get the cursor on the target. For
example, if you think that you should move your hand
directly underneath the target to get your cursor to hit the
target, then touch the target. If you think that you should
move your hand anywhere else to get the cursor on the
target, then touch that spot.”

Additionally, participants were encouraged to ask ques-
tions if they found the instructions to be unclear.

Forty-two participants were equally divided into three
groups to examine how exposure to different perturbation
structures affected acquisition of a new perturbation from
the same or different structure. We exposed participants
to either rotation or gain perturbations (Fig. 2D) or, in the
control group, veridical feedback during the exposure
phase before they experienced a rotation perturbation in
the test phase. As in experiment 1, each participant re-
ceived a unique perturbation schedule.

The rotation group experienced rotational perturbations
during the exposure phase before being exposed to a 60°
rotation in the test phase (congruent schedule). These
rotational perturbations were drawn from a uniform distri-
bution of integers ranging from �90° to 90°, excluding 0°
and values �10° of the rotation value in the test phase
(60°) and its inverse, �60°. The mean value of selected
exposure phase rotation perturbations for any given sub-
ject was 0° (� exposure phase maximum rotation across
subjects � 86.64°, � � 3.48°; � exposure phase minimum
rotation across subjects � �87.29°, � � 2.7°).

The gain group experienced a sequence of radial
perturbations during the exposure phase before a 60°
rotation in the test phase (incongruent schedule). Gain
perturbations were drawn from a uniform distribution with
a lower bound of 0.66 and an upper bound of 2.30,
excluding 1. These parameters were chosen so that par-
ticipants could successfully reach all target locations (the
tablet size precluded using negative gains �0.66 because
the reach solution would exceed the boundaries of the
active tablet space). Because the size of the active tablet
space did not allow for as broad a range of negative gains
as positive gains and because of our constraint that each
perturbation within a given participant’s exposure phase
be unique, the mean value of selected exposure phase
gain perturbations for each participant was not exactly 1
but biased toward a positive gain, with a modest toler-
ance for mean exposure phase values ranging from 0.90
to 1.10 (� of exposure phase gain sequences across
subjects: 1.04, � � 0.05; � exposure phase maximum
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gain across subjects � 1.98, � � 0.17; � exposure phase
minimum gain across subjects � 0.66, � � 0.01).

Finally, the control group did not experience any per-
turbation during the exposure phase, but experienced a
60° rotation in the test phase.

Experiment 2 analyses
Reach trajectories were transformed into polar coordi-

nates as in experiment 1. We quantified explicit learning
as the x-y coordinates of the tapped aiming location,
which were transformed into polar coordinates and ro-
tated to a common axis. Our analyses for each phase of
interest were similar to experiment 1, except that we
performed one-way ANOVAs with a single factor of group
(rotation, gain, control) in place of two-way ANOVAs. We
did not seek to compare implicit learning between groups
during the exposure phase as the perturbations were
fundamentally different (rotations vs gains). However, we
did analyze implicit learning during the first epoch of the
test phase using a one-way ANOVA with a single factor
of group. Additionally, to test whether the gain group
showed persistent radial differences from the rotation and
control groups during early test phase learning, we con-
ducted two one-way ANOVAs on the first epoch of test
phase reaching and aiming radii with a single factor of
group. To test for dependence between explicit re-aiming
and overall reaching in the early test phase, we conduct
paired t tests between aiming and reaching values during
the first epoch of the test phase for each group and
correlate the explicit re-aiming and reaching distributions
within a group. We follow the same conventions for sta-
tistical significance as in experiment 1. Superscript letters
associated with analyses correspond to the statistical
tests shown in Table 3.

Power analysis
Because estimates of mean and variance were not

available from Braun et al. (2009), we based our sample
size (N � 10/group) on a prior sensorimotor adaptation
task measuring aiming and using multiple rotation sizes.
For experiment 2, however, we computed the sample size
required to achieve similar effect sizes using learning
rates (first eight-trial epoch in test phase) from the

structure-report and nostructure-report groups from ex-
periment 1. We focused on learning rate since our primary
interest was in how structure in the exposure phase af-
fected learning rate in the test phase. For the learning rate
differences between structure-report and nostructure-
report, the effect size as measured by Cohen’s f was 1.03
(structure-report: � � �51.54°, � � 21.33°; nostructure-
report: � � 7.63°, � � 10.97°). Using a conservative �
value of 0.01, we estimated that a sample size of 14
participants per group provided ample power.

Results
Experiment 1. Does structural learning arise from
explicit re-aiming or implicit learning?

In experiment 1, we tested whether structural learning
was expressed through explicit re-aiming or an implicit
recalibration process.

Baseline phase
All participants practiced reaching to the target with ve-

ridical feedback to become familiarized with the task. In the
second half of the baseline phase, participants practiced
reaching to the target with veridical feedback while verbally
reporting their intended aiming location using the virtual ring
of numbers on-screen. To assess whether there were any
baseline differences between groups that could affect expo-
sure phase learning, we compared reaching performance
(endpoint hand angles) across groups. Endpoint hand an-
gles during the last epoch of the baseline phase were sub-
mitted to a two-way ANOVA with factors of structure and
report (Table 1), which revealed no effect of structure (F(1,36)

� 0.60, p � 0.4441), a marginal effect of report (F(1,36) �
4.12, p � 0.0498), and no interaction (F(1,36) � 0.20, p �
0.6579)a. Because none of the participants had yet experi-
enced a perturbation, we did not expect structure to mod-
ulate performance or interact with reporting. The marginal
effect of reporting decreased baseline reach accuracy
(Table 1, baseline section), but the magnitude of the maxi-
mum difference between reporting and nonreporting group
averages was small, on the order of 3° (Table 1).

Exposure phase
To expose participants to rotational structure, struc-

ture-report and structure-noreport groups experienced a

Table 1. Average endpoint hand angles, aiming angles, and estimates of implicit learning for each consistent experiment
phase (excluding the exposure phase)

Experiment phase Structure-report Structure-noreport Nostructure-report Nostructure-noreport
Baseline

Hand angle 2.98 � 6.36 0.27 � 1.44 1.64 � 2.11 �0.09 � 1.05
Aim 0 � 0 — 0.14 � 0.44 —
Implicit 0.76 � 0.97 — 1.5 � 2.13 —

Feedback washout
Hand angle �0.06 � 1.38 1.74 � 1.73 0.04 � 0.75 �0.16 � 0.82
Aim �0.42 � 0.95 — 0 � 0 —
Implicit 3.64 � 8.53 — �0.12 � 1.35 —

Early test
Hand angle �50.2 � 5.70 �38.7 � 21.91 �6.75 � 21.07 �12.97 � 19.06
Aim �51.54 � 5.33 — �6.5 � 19.96 —
Implicit 1.34 � 4.23 — �1.49 � 20.94 —

No-feedback-washout
Hand angle 4.91 � 6.90 �2.89 � 2.5 �6.45 � 2.88 �6.44 � 3.29
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series of rotations pseudorandomly drawn from a zero-
mean, uniform distribution. Note that our analyses of the
exposure phase only focus on the groups that experi-
enced structure. The groups that did not experience
structure either continued to have similar or improved
performance compared to the baseline phase (nostruc-
ture-noreport: t(9) � �0.77, p � 0.4593; nostructure-re-
port: t(9) � 2.75, p � 0.0225; Table 1)b.

To examine how well participants in the structure
groups tracked the variable perturbation schedule, we
cross-correlated and regressed the endpoint hand angles
with the exposure phase solution for each participant. We
found that participants exposed to rotation structure
quickly updated their movement vector during the expo-
sure phase. The correlation coefficient between the hand
angle and rotation solution was 0.83 � 0.16 and 0.58 �
0.21 for the structure-report and structure-noreport
groups, respectively. The median of the optimal cross-
correlation lag was 1 for the structure-report (IQR: 0) and
structure-noreport groups (IQR: 1). Correlation coeffi-
cients between groups were significantly different (t(18) �
2.94, p � 0.0088)c, indicating that reporting may have
helped participants respond to the rotation sequence.

Likewise, the average slopes for the structure-report
and structure-noreport groups were 0.72 � 0.15 and
0.52 � 0.22, respectively. The distribution of slopes within
each group was significantly different from zero (struc-
ture-report: t(9) � 14.90, p � 1.1967e-07; structure-nore-
port: t(9) � 7.40, p � 4.0938e-05)d and there was a
significant difference between groups (t(18) � 2.45, p �
0.0249)e. Taken together, these analyses suggest that

both groups learned to counter the pseudorandom visuo-
motor rotations during the exposure phase, but the act of
reporting may have augmented performance. Note that
because the sequence of rotations was different for each
participant, we cannot plot a subject-averaged time series
of exposure phase performance. Instead, Figure 3 shows
performance from a range of participants in the structure-
report and structure-noreport groups.

For the structure-report group, we also cross-co-
rrelated aiming angles and our estimate of implicit learn-
ing with the exposure phase solution. As shown in the
sample time courses (Fig. 3), explicit learning was highly
responsive to the perturbation series. Indeed, we found
that reported aiming and movement vectors were up-
dated simultaneously, with a correlation coefficient of
0.84 � 0.17 and a median optimal lag of 1 (IQR: 0),
strikingly, these aiming lag values were exactly those
calculated for hand angles, further reinforcing their syn-
chronous relationship. The average explicit learning slope
was 0.73 � 0.17 (t(9) � 13.31, p � 3.1703e-07)f, suggest-
ing that explicit re-aiming accounted for the majority of
learning during the exposure phase. In contrast, when we
performed the same analyses on the implicit component
of learning, we found that the correlation coefficient was
only 0.13 � 0.05 and with a median lag of 4 and high
variability among subjects (IQR: 7). The average implicit
learning slope was shallow (0.00 � 0.06) and the distri-
bution of implicit learning slopes was not significantly
different from zero (t(9) � �0.12, p � 0.9106)g. These
results are not entirely unexpected because recent re-
search has shown that re-aiming underlies quick perfor-

Figure 3. Experiment 1. Example reach performance. Endpoint hand angle (purple), for the best (first column), median (second
column), and worst (third column) participants based on the slope of a linear regression of exposure phase endpoint hand angles on
the rotation solution (gray lines). Note that the solution angle is simply the opposite of the rotation angle. Top row, Explicit re-aiming
(red) and implicit learning (blue) for participants in the structure-report group. Bottom row, Endpoint hand angle for participants in the
structure-noreport group.
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mance improvement and because the exposure phase
perturbation schedule was designed to minimize the con-
tribution of implicit learning.

Feedback-washout phase
Directly after the exposure phase, all participants were

exposed to veridical feedback to ensure that any bias in-
duced by the exposure phase was removed before the test
phase. To confirm that movements were unbiased by the
perturbation series during the last epoch of the feedback-
washout phase, we conducted a two-way ANOVA with fac-
tors of structure and report. There was a marginal effect of
reporting (F(1,36) � 4.17, p � 0.0484), an effect of structure
(F(1,36) � 5.31, p � 0.0271), and an interaction between
reporting and structure (F(1,36) � 6.54, p � 0.0149)h, indicat-
ing that reporting modulated the influence of structure on
hand angles. Post hoc, Bonferroni-corrected t tests between
groups indicated that there was a difference between the
structure-report group and the structure-noreport group
(p � 0.015) but no difference between the structure-report
group and the nostructure-report and nostructure-noreport
groups (p � 0.99 for both comparisons). The structure-
noreport group was different from the nostructure-report group
(p � 0.024) and the nostructure-noreport group (p � 0.009).
There was no difference between the nostructure-report group
and the nostructure-noreport group (p � 0.99). Overall, the
effect of reporting and structure exposure on endpoint hand
angles was inconsistent, and when present, affected reaching
to a minor degree. The magnitude of the maximum difference
between group averages was small, �2° (Table 1).

There was no difference between aiming angles during the
last epoch of the feedback-washout phase for the structure-
report and nostructure-report groups (t(18) � �1.41, p �
0.1769)i. These results indicate that the aiming behavior in-
duced by the exposure phase was washed out before the test
phase, and while there were differences between group end-
point hand angles, these differences were minor.

Test phase
In the test phase, all participants were exposed to a 60°

counterclockwise rotation. Because a change in learning

rate is the signature of structural learning, learning rate
was our primary dependent measure in the test phase.
Based on prior work, we predicted that the groups ex-
posed to rotation structure would have a greater learning
rate compared to groups that were not exposed to struc-
ture. Two open questions remain: does the reporting pro-
cedure affect structural learning and does the increased
learning rate arise from explicit re-aiming or implicit
learning?

To address the first question, we submitted the average
endpoint hand angles over the first eight trials, our proxy
for learning rate, to a two-way ANOVA with factors of
structure exposure and reporting. We found a main effect
of structure (F(1,36) � 36.28, p � 6.48e-07), no effect of
reporting (F(1,36) � 0.21, p � 0.648), and no interaction
(F(1,36) � 2.38, p � 0.132)j, indicating that the increase in
learning rate was a consequence of rotation structure
exposure rather than being cued to report an explicit
re-aiming strategy and that reporting did not modulate the
effect of structural exposure on learning rates (Fig. 4A;
Table 1). Note that these results do not provide evidence
to suggest that explicit re-aiming processes do not ex-
press structural learning, but that probing this component
of learning does not significantly affect learning rate.

We wanted to determine if the increase in learning rate
evident in endpoint hand angle was attributable to
changes in explicit re-aiming processes or implicit learn-
ing. Because explicit re-aiming and our estimate of im-
plicit learning are correlated, we submitted explicit
learning and implicit learning values during the first epoch
of the test phase to a MANOVA with a single factor of
structure exposure. There was a main effect of structure
exposure on performance (F(1,18) � 24.60, p � 9.582e-06,
Pillai’s trace � 0.74)k. Explicit re-aiming differed with
structure exposure (F(1,18) � 47.54, p � 1.901e-06) while
implicit learning did not (F(1,18) � 0.18, p � 0.6803; see
Table 1 for average explicit learning and implicit learning
values). Altogether, these results indicate that differences
in learning rate for a novel rotation are attributable to

Figure 4. Experiment 1. The feedback-washout phase and the time course of learning during the test phase. A, Overall learning.
Overall learning is accelerated in the groups exposed to rotation structure (structure-report, shown in red, and structure-noreport,
shown in purple) relative to groups without structure exposure (nostructure-report, shown in forest green, and nostructure-noreport,
shown in dark blue). B, Explicit re-aiming. Explicit re-aiming composes all of performance in the structure-report group and the
majority of performance in the nostructure-report group. C, Implicit learning. Implicit learning in the reporting groups, structure-report
and nostructure-report. Error is shown as SEM.
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changes in explicit re-aiming, not implicit learning (Fig.
4B,C).

Aftereffects
During the no-feedback-washout phase, the aiming

landmarks were removed and participants were in-
structed to reach directly to the target to measure the
implicit aftereffects of learning in the test phase. The
averaged, baseline-subtracted endpoint hand angles in
the first epoch of the no-feedback-washout phase were
submitted to a two-way ANOVA with factors of report and
structure. We found no effect of reporting on aftereffect
size (F(1,36) � 0.57, p � 0.4541)l. However, there was an
unexpected, albeit marginal, effect of structure exposure
(F(1,36) � 3.55, p � 0.0677)l, suggesting that exposure to
pseudorandomly varying rotations suppresses the mea-
sured aftereffect size for a novel rotation (Table 1). There
was no interaction between reporting and structure expo-
sure (F(1,36) � 0.55, p � 0.4620)l, indicating that reporting
did not modulate the effect of structural learning on after-
effects.

Experiment 2. Is structural learning specific to the
trained perturbation structure or expressed via a
general aiming heuristic?

In experiment 2, we tested the specificity of the training
needed to increase the learning rate for a novel rotation. In
contrast to experiment 1, we exposed participants to
either rotation perturbations or gain perturbations, such
that the training structure was either consistent or incon-
sistent with the rotation structure in the test phase.

Baseline phase
All participants practiced reaching to the target with

veridical endpoint feedback to become familiarized with
the task. In the second half of the baseline phase, partic-
ipants practiced reaching to the target while tapping a
touchscreen to report their intended reach endpoint (Fig.
2C). To assess whether there were any baseline differ-
ences between groups that could affect exposure phase
learning, we compared reaching performance. There were
no differences across groups in the angular component of
reaching (F(2,39) � 0.76, p � 0.4764)m during the last
epoch of the baseline phase. There was, however, a
significant difference between groups for baseline reach
distances (F(2,39) � 4.44, p � 0.0182)n. Post hoc,
Bonferroni-corrected pairwise comparisons revealed a
significant difference between the rotation and gain group

reach distances (p � 0.0278), a marginally significant
difference between gain and control group reach dis-
tances (p � 0.0651), and no significant difference be-
tween rotation and control group reach distances (p �
0.99). The magnitude of the difference between group
means was minor, measuring 6.55 mm at maximum
(Table 2).

Exposure phase
To determine if structural learning was specific to the

form of the trained perturbation structure, we exposed the
gain group to gain perturbations (Fig. 2D) and the rotation
group to rotation perturbations during the exposure
phase. To prevent participants from transferring an aver-
age representation of the perturbation series, we ensured
that the perturbations were drawn from a uniform distri-
bution such that the rotation series averaged to zero and
the gain series averaged to approximately one for any
given participant. The control group continued to experi-
ence veridical feedback during this phase, which im-
proved performance such that participants more closely
approximated hitting the target (t(13) � 2.64, p � 0.0203)o.

To examine how well participants in the rotation group
opposed the variable perturbation schedule, we cross-
correlated and regressed endpoint hand angles with the
exposure phase solution for each participant. We found
that participants in the rotation group quickly updated
their movement vectors in response to the perturbation
sequence. The median lag which maximized the correla-
tion between reaching and solution time courses for par-
ticipants in the rotation group was 1 (IQR: 1), and the
mean correlation between endpoint hand angles and
the solution was 0.59 � 0.24. Because we perturbed the
radial component of movement for the gain group, we
conducted the cross-correlation and regression analyses
of performance in that group using endpoint hand radii. The
median lag for the gain group was 2 (IQR: 2) and the mean
correlation between endpoint hand radii and the solution
was 0.42 � 0.16. Correlation coefficients between groups
were marginally different (t(26) � �2.10, p � 0.0456)p, sug-
gesting that participants may be more sensitive to perturba-
tions affecting the angular component of feedback. Despite
this difference in sensitivity to perturbation types, partici-
pants were capable of tracking both radial and angular
perturbations (see Figure 5 for exposure phase performance
in sample gain and rotation participants).

Table 2. Average endpoint hand angles/radii and aiming angles/radii for each consistent experiment phase

Experiment phase Rotation group Gain group Control group
Baseline

Hand angle/radius 3.71 � 2.47/69.24 � 6.20 5.52 � 6.20/62.68 � 6.35 4.20 � 2.03/68.41 � 6.44
Aim angle/radius 0.77 � 0.51/71.60 � 2.42 0.42 � 0.0.86/71.21 � 1.64 1.19 � 1.28/70.84 � 2.89

Feedback-washout
Hand angle/radius 4.35 � 4.19/67.64 � 4.46 2.91 � 2.75/74.16 � 6.93 2.55 � 2.09/70.84 � 3.38
Aim angle/radius �0.48 � 2.20/72.45 � 6.19 0.18 � 1.20/76.19 � 11.91 �0.49 � 1.63/73.38 � 4.65

Test
Hand angle/radius �42.53 � 11.21/71.91 � 6.43 �9.81 � 23.48/73.27 � 11.34 �14.83 � 13.14/73.08 � 6.14
Aim angle/radius �43.23 � 11.63/73.32 � 4.75 �5.59 � 34.19/72.42 � 13.62 �16.65 � 11.71/74.42 � 7.73

Error is shown as SD. Angles are measured in degrees and radii are measured in millimeters.
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Table 3. A summary of statistical analyses

Line Dependent variable Test Statistic Confidence

a Average endpoint hand angles during last epoch of the baseline
phase for all groups in experiment 1

Two-way ANOVA Structure_F(1,36) � 0.60, report_F(1,36) � 4.12,
interaction_F(1,36) � 0.20

Structure_partial �2 � 0.01, p � 0.4441;
report_partial �2 � 0.1, p � 0.0498;
interaction_partial �2 � 0.01, p � 0.6579

b Average endpoint hand angles for nostructure-noreport and
nostructure-report groups during last epoch of the baseline
phase and average endpoint hand angles for the exposure
phase

Paired t test Nostructure-noreport_t(9) � -0.77 Nostructure-noreport _CI:
�0.8441/0.4141, p � 0.4593;
nostructure-report_CI: 0.2853/2.9324,
p � 0.0225

Nostructure-report_t(9) � 2.75

c Correlation coefficients for exposure phase endpoint hand
angles and rotation solutions for structure-report and
structure-noreport groups

Two-sample t
test

t(18) � 2.94 CI: 0.0699/

0.4207, p � 0.0088

d Endpoint hand angle-solution regression slopes for structure-
report and structure-noreport groups

One-sample t
test

Structure-report_t(9) � 14.90, structure-
noreport_t(9) � 7.40

Structure-report _CI: 0.6139/0.8336, p
� 1.1967e-07; structure-noreport_CI:
0.3582/0.6735, p � 4.0938e-05

e Endpoint hand angle-solution regression slopes for structure-
report and structure-noreport groups

Two-sample t
test

t(18) � 2.45 CI: 0.0294/0.3864, p � 0.0249

f Aiming angle-solution regression slope for structure-report
group

One-sample t
test

t(9) � 13.31 CI: 0.6063/0.8546, p � 3.1703e-07

g Implicit angle-solution regression slope for structure-report
group

One-sample t
test

t(9) � �0.12 CI: �0.0463/0.0418, p � 0.9106

h Average endpoint hand angles for all groups in experiment 1
during last epoch of the feedback-washout phase

Two-way ANOVA Structure_F(1,36) � 5.31, report_F(1,36) � 4.17,
interaction_F(1,36) � 6.54

Structure_partial �2 � 0.13, p � 0.0271;
report_partial �2 � 0.10, p � 0.0484;
interaction_partial �2 � 0.15, p �

0.0149

i Average aiming angles for structure-report and nostructure-
report groups during last epoch of the feedback-washout
phase

Two-sample t
test

t(18) � �1.41 CI: �0.2087/1.0525, p � 0.1769

j Average endpoint hand angles during first epoch of the test
phase for all groups in experiment 1

Two-way ANOVA Structure_F(1,36) � 36.28, report_F(1,36) �

0.21, interaction_F(1,36) � 2.38
Structure_partial �2 � 0.50, p � 6.48e-

07; report_partial �2 � 0.01, p �

0.648; interaction_partial �2 � 0.06,
interaction_ p � 0.132

k Average aiming angles and implicit angles during first epoch of
the test phase for structure-report and nostructure-report
groups

One-way
MANOVA

F(1,18) � 24.60 Pillai’s trace � 0.74, p � 9.582e-06

l Baseline-subtracted, average endpoint hand angles during first
epoch of the no-feedback washout phase for all groups

Two-way ANOVA Structure_F(1,36) � 3.55, report_F(1,36) � 0.57,
interaction_F(1,36) � 0.55

Structure_partial �2 � 0.09, p � 0.0677;
report_partial �2 � 0.02, p � 0.4541;
interaction_partial �2 � 0.02, p �

0.4620

m Average endpoint hand angles in experiment 2 during last
epoch of the baseline phase for all groups

One-way ANOVA F(2,39) � 0.76 Partial �2 � 0.04, p � 0.4764

n Average endpoint hand radii in experiment 2 during last epoch
of the baseline phase for all groups

One-way ANOVA F(2,39) � 4.44 Partial �2 � 0.19, p � 0.0182

o Average control group endpoint hand angles during last epoch
of the baseline phase and exposure phase

Paired t test t(13) � 2.64 CI: 0.2869/2.8518, p � 0.0203

p Correlation coefficients for exposure phase reach performance
and perturbation solutions for gain and rotation groups

Two-sample t
test

t(26) � �2.10 CI: 0.0034/0.3221, p � 0.0456

q Exposure phase reach-solution regression slopes for gain and
rotation groups

One-sample t
test

Gain_t(13) � 6.88, Gain_CI: 0.2296/0.4396, p � 1.1109e-
05; rotation_CI: 0.3739/0.6463, p �

1.9788e-06
Rotation_t(13) � 8.09

r Exposure phase reach-solution regression slopes for gain and
rotation groups

Two-sample t
test

t(26) � �2.20 CI: �0.3391/�0.0119, p � 0.0365

s Average endpoint hand angles for all groups in experiment 2
during last epoch of the feedback-washout phase

One-way ANOVA F(2,39) � 1.3 Partial �2 � 0.06, p � 0.2850

t Average aiming angles for all groups in experiment 2 during last
epoch of the feedback-washout phase

One-way ANOVA F(2,39) � 5.63 Partial �2 � 0.22, p � 0.0071

u Average endpoint hand radii for all groups in experiment 2
during last epoch of the feedback-washout phase

One-way ANOVA F(2,39) � 0.68 Partial �2 � 0.03, p � 0.5109

v Average aiming radii for all groups in experiment 2 during last
epoch of the feedback-washout phase

One-way ANOVA F(2,39) � 0.79 Partial �2 � 0.04, p � 0.4608

w Average endpoint hand angles for all groups during first epoch
of the test phase

One-way ANOVA F(2,39) � 15.36 Partial �2 � 0.44, p � 1.2049e-05

x Reaching radii for all groups during first epoch of the test phase One-way ANOVA F(2,39) � 0.11 Partial �2 � 0.01, p � 0.8956

y Aiming radii for all groups during first epoch of the test phase One-way ANOVA F(2,39) � 0.19 Partial �2 � 0.01, p � 0.8317

z Average aiming angles for all groups during first epoch of the
test phase

One-way ANOVA F(2,39) � 10.90 Partial �2 � 0.36, p � 1.7326e-04

aa Average implicit angles for all groups during first epoch of the
test phase

One-way ANOVA F(2,39) � 0.99 Partial �2 � 0.05, p � 0.3816

bb Average aiming angles and average endpoint hand angles
during first epoch of test phase

Paired t tests Rotation_t(13) � 0.35, Rotation_CI:�5.0710/3.6744, p �

0.7356; gain_CI: �6.6180/15.0414, p
� 0.4160; control_CI:
�4.9148/1.2700, p � 0.2253

gain_t(13) � �0.84,

control_t(13) � 1.27

(Continued)
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For the rotation group, the average slope between the
exposure phase hand angle and the rotation solution was
0.51 � 0.24 and the distribution of rotation slopes was

significantly different from zero (t(13) � 8.09, p � 1.9788e-
06)q. The average slope for the gain group was 0.33 �
0.18 and the distribution of gain slopes was significantly

Table 3. A summary of statistical analyses

Line Dependent variable Test Statistic Confidence

cc Average aiming angles and average endpoint hand angles
during first epoch of test phase

Pearson
correlations

Rotation_r � 0.78, Rotation_CI: 0.4269/0.9272, rotation_p
� 0.0010; gain_CI: 0.5874/0.9523, p
� 0.0001; control_CI: 0.7427/0.9726,
p � 5.0555e-06

gain_r � 0.85,

control_r � 0.91

The first column specifies the superscript letter used to identify the statistical test within the manuscript, the second column lists the dependent variable on
which the test is conducted, the third column lists the type of test used, the fourth column shows the test statistic, and the final column provides a measure
of confidence appropriate for the type of test conducted.

Figure 5. Experiment 2. The best (first column), median (second column), and worst (third column) performance based on the slope of a
linear regression of exposure phase reach performance on the perturbation solution (gray lines). Top row, Endpoint hand angle for the
rotation group (red). Second row, Radial distance of reach endpoint relative to the target distance for the gain group (purple). Negative
values indicate a reach distance greater than the target distance and positive values indicate a reach distance shorter than the target
distance. Bottom row, Exposure phase aiming locations in x-y space. Exposure phase aiming from sample subject from the gain (shown
in purple) and rotation (shown in red) groups. � value scales with trial number such that the last trial within an epoch is most opaque. The
gray points represent the solution for a given trial. Note that a sample subject is not shown from the control group because they simply
received veridical feedback.
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different from zero (t(13) � 6.88, p � 1.1109e-05)q. Rota-
tion slopes were significantly greater than gain slopes (t(26)

� �2.20, p � 0.0365)r, providing further support for the
idea that participants more accurately track rotational
perturbations than gain perturbations.

Feedback-washout phase
The purpose of the feedback-washout phase was to

use veridical feedback to remove any influence that the
exposure phase may have had on participants’ move-
ments. To confirm that movements were unbiased by the
perturbation series during the last epoch of the feedback-
washout phase, we conducted four one-way ANOVAs
with a single factor of group, comparing angular and radial
components of aiming and reach performance in the last
epoch of the feedback-washout phase. There were no
differences in endpoint hand angles (F(2,39) � 1.3, p �
0.2850)s or aiming angles (F(2,39) � 0.68, p � 0.5109)t

between groups. However, there was a significant differ-
ence in endpoint hand radii between groups (F(2,39) �
5.63, p � 0.0071)u, but the maximum difference between
mean group radii was small, measuring �6.52 mm (rota-
tion-gain: p � 0.0053, all other comparisons insignificant;
Table 2), which was similar to the difference observed in
the baseline phase. There were no between-group differ-
ences in aiming radii (F(2,39) � 0.79, p � 0.4608)v.

Test phase
In the test phase, all participants were exposed to a 60°

counterclockwise rotation. Our primary question for this
experiment was: does structural exposure have a
structure-specific effect on learning? We predicted that if
the exposure phase simply taught participants to use a
general aiming heuristic, then gain and rotation groups
might have similar test phase performance and both
groups would learn more quickly than the control group.
However, if participants learned the perturbation struc-
ture, then the rotation group would improve performance
in the test phase much more quickly than either the gain
or control group.

To shed light on this, we submitted endpoint hand
angles averaged over the first epoch of the test phase to
a one-way ANOVA with a single factor of group. We found
a significant difference between groups (F(2,39) � 15.36,
p � 1.2049e-05)w. A Bonferroni-corrected pairwise com-
parison showed a significant difference between the ro-
tation and gain groups (p � 2.3705e-05) and a significant
difference between rotation and control groups (p �
2.7993e-04). There was no difference between gain and
control groups (p � 0.99).

To test whether the gain group showed persistent radial
differences from the rotation and control groups during
early test phase learning, we conducted two one-way
ANOVAs on the first epoch of test phase reaching and
aiming radii with a single factor of group. We found no
differences in reaching radii (F(2,39) � 0.11, p � 0.8956)x or
aiming radii (F(2,39) � 0.19, p � 0.8317)y between groups,
suggesting that differences in learning rate were restricted
to the angular dimension (Table 2).

Based on our results from experiment 1, we predicted
that explicit re-aiming drove this structure-specific effect

on reach performance instead of implicit learning. To test
this idea, we performed the same analysis as above using
the reported aiming angles and our estimate of implicit
learning during the first epoch of the test phase. Consis-
tent with our prediction, we found a significant difference
in re-aiming between groups (F(2,39) � 10.90, p �
1.7326e-04)z but no difference in implicit learning (F(2,39) �
0.99, p � 0.3816)aa. A Bonferroni-corrected pairwise
comparison of re-aiming revealed a significant difference
between the rotation and gain groups (p � 1.5708e-04)
and a significant difference between rotation and control
groups (p � 0.0080). As above, there was no difference in
re-aiming between gain and control groups (p � 0.5689).

Learning rates for explicit re-aiming and reaching were
indistinguishable for every group (paired t test; rotation:
t(13) � 0.35, p � 0.7356, gain: t(13) � �0.84, p � 0.4160,
control: t(13) � 1.27, p � 0.2253)bb and the distributions of
explicit re-aiming and reaching learning rates were closely
correlated for each group (rotation: r � 0.78, gain: r �
0.85, control: r � 0.91)cc. The synchronicity of re-aiming
and movement vector updating is also clearly shown in the
time courses of explicit re-aiming and reaching (Fig. 6).

Overall, these results favor the idea that exposure to
perturbation structure leads to structure-specific effects
on learning rate for a novel rotation. Consistent with our
prediction, this increase in learning rate is mediated via
explicit re-aiming.

Discussion
In this study, we sought to shed light on whether explicit

re-aiming could contribute to the phenomenon of struc-
tural learning. A prior study suggested that structural
learning could not be attributable to an explicit, cognitive
strategy because explicitly informing participants of the
task solution did not improve performance (Genewein
et al., 2015). However, the perturbation did not always
follow the instructed strategy and, consequently, partici-
pants may not have trusted the strategy or applied it
consistently. Furthermore, an instructed strategy can be
worse for performance than self-discovery (Mazzoni and
Krakauer, 2006; Gureckis and Markant, 2012) and in some
cases may prevent the expression of learning (Reber,
1989).

To investigate whether structural learning can be
expressed by an explicit process, we conducted two
experiments, combining two techniques to assay explicit
re-aiming behavior with the structural learning perturba-
tion schedule from Braun et al. (2009). We found that prior
experience with a variable rotation schedule drastically
improved the learning rate for a novel rotation. This effect
was entirely driven by explicit re-aiming. Additionally, par-
ticipants only showed learning rate benefits when expo-
sure and test phase perturbations were drawn from the
same perturbation structure, suggesting that rotation struc-
ture learning is accomplished via structure specific re-
aiming instead of a simple heuristic. Because the
contribution of implicit learning was negligible, we sug-
gest that the process responsible for structural learning in
a sensorimotor adaptation task may be similar to those
involved in other domains such as category learning
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(Ashby and Maddox, 2005; Huang-Pollock et al., 2011),
concept learning (Goodman et al., 2008), and decision
making (Frank et al., 2009).

Structural learning of rotational perturbations is
explicitly accessible

Our first experiment examined whether rotation metale-
arning was primarily expressed via explicit or implicit learn-
ing processes. Given the abundance of recent evidence to
indicate that explicit learning underlies rapid changes in
performance, we predicted that explicit learning would drive
the increased learning rate in the groups which were ex-
posed to rotation structure. Indeed, we found that explicit
processes conferred the entirety of the learning rate benefit
characteristic of a metalearning process.

Surprisingly, for participants who received rotation
structure training, implicit learning and its corresponding
aftereffects were smaller. Note that this was not an effect
of reporting, as we found no difference between reporting
and nonreporting groups. Indeed, test phase implicit
learning in the nostructure-report group matched the de-
gree of implicit learning found in a previous study (Bond
and Taylor, 2015).

One possibility is that structure training indirectly af-
fects implicit learning by changing explicit re-aiming pro-
cesses. A recent study found that implicit generalization is
centered about the aiming location and not the target,
hand, or cursor position (Day et al., 2016). Thus, partici-
pants who aim to a greater magnitude will train implicit
learning farther from the target location. If implicit learning
is tied to an aiming location, then when participants are
asked to stop aiming and instructed to reach directly to
the target, as in the no-feedback washout phase of the
current study, aftereffects will appear to be smaller. Cor-
respondingly, if participants were instead asked to aim at

their most frequent aiming location, aftereffects should be
much greater (Day et al., 2016). In our study, it is likely that
participants in the structure-report group more consistently
aimed to a greater magnitude than the nostructure-report
group. This would cause implicit learning to peak farther
from the target location and become more localized. In
contrast, the nostructure-report group may have more fre-
quently aimed to locations between the target and the aim-
ing solution, causing implicit learning to be tied to a wider
spread of spatial positions, which could create the appear-
ance of larger aftereffects in the nostructure-report group.
While this simple explanation is attractive, it should be noted
that implicit learning during the test phase also appeared to
be different between groups, which cannot be fully ac-
counted for by aiming-based generalization.

Regardless of the above possibilities, implicit learning
does not appear to be capable of expressing structural
learning. This implies that forward models, which are
thought to underlie implicit learning in visuomotor adap-
tation tasks (Wolpert and Miall, 1996), are restricted to
learning parametric, rather than structural, relationships
between action and feedback. It is unlikely that the cere-
bellum, which has been consistently linked with perform-
ing computations akin to a forward model (Taylor et al.,
2010; Izawa et al., 2012; Schlerf et al., 2012; Morehead
et al., 2017), could facilitate structural learning. Instead,
structural learning of rotations may rely on neural mech-
anisms common to explicit, rule-based systems in other
domains, such as category learning (Ashby and Maddox,
2005; Huang-Pollock et al., 2011), concept learning (Good-
man et al., 2008), and decision making (Frank et al., 2009).
There is evidence to suggest that abstracting rules for
action progressively activates the rostral-caudal axis (Ba-
dre et al., 2010), with increased activation in the prePMd
as the search for relationships between action and feed-

Figure 6. Experiment 2. The feedback-washout phase and the time course of test phase learning. A, Overall learning. Overall learning
is accelerated in the rotation group (shown in red) relative to both the gain (shown in purple) and control (shown in blue) groups. There
is no difference between gain and control group learning rates. B, Explicit re-aiming. Aiming patterns underlie overall performance,
with the rotation group showing an explicit re-aiming learning rate commensurate with the overall learning rate. The same is true of
the gain and control groups. Error is shown as SEM.
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back becomes more abstract. Given that the prefrontal
cortex is consistently engaged in the early stages of
learning a sensorimotor task (Shadmehr and Holcomb,
1997; Floyer-Lea and Matthews, 2004; Suzuki et al., 2004;
Seidler et al., 2006; Anguera et al., 2007; Seidler et al.,
2013) and patients with prefrontal lesions show impaired
performance in these tasks (Slachevsky et al., 2001;
Slachevsky et al., 2003; Taylor and Ivry, 2014; Taylor
et al., 2014), perturbation structure learning tasks driven
by explicit learning processes may also generate the
same activation patterns during abstraction. However,
forming abstractions in a larger space might tax the limit
of explicit learning processes, and therefore such tasks
might recruit the aid of multiple learning processes, including
model-based and model-free reinforcement learning (Badre
et al., 2010; Collins and Frank, 2016).

Alternatively, Herzfeld and colleagues suggested that
the motor system changes its sensitivity to previously
experienced errors, which could lead to savings or, per-
haps, structural learning (Herzfeld et al., 2014). While a
change in error sensitivity would be assumed to rely on
implicit processes, it is entirely possible that this change
in sensitivity is the result of an explicitly accessible re-
aiming process. Future work is needed to dissociate the
source of changes in error sensitivity using a paradigm
similar to that of Herzfeld et al. (2014).

Finally, rotation magnitude may dictate whether struc-
tural learning is expressed through an explicit re-aiming or
implicit learning process. Implicit learning appears to ex-
hibit a highly stereotyped response (Bond and Taylor,
2015), and operates to a similar degree for any error
between 7.5° and 90° (Morehead et al., 2017). In contrast,
explicit re-aiming exhibits a dose-dependent response
across a wide range of rotation magnitudes (Bond and
Taylor, 2015). Even when rotations are small, explicit re-
aiming reduces error during early learning while implicit
learning accumulates (Bond and Taylor, 2015). However,
the relative contribution of explicit and implicit processes
has only been investigated for rotations 	15°. Thus, it
may be possible that participants do not explicitly reaim
their movements for rotations smaller than 15°, and, as a
consequence, structural learning may be expressed im-
plicitly. Nevertheless, we think that this is an unlikely
scenario given that implicit learning shows a highly ste-
reotyped response (Morehead et al., 2017) and fails to
exhibit savings (Morehead et al., 2015).

Test phase learning rate improvements are driven by
explicitly accessible structural learning, not heuristic
aiming strategies

While our first experiment clearly demonstrated that
explicit processes were responsible for an increased
learning rate for a novel rotation, it failed to pinpoint the
source of improved test phase performance because both
simple aiming heuristics and rotation structure learning
could yield the same benefit. In our second experiment,
we investigated whether exposure to distinct perturbation
structures resulted in structure-specific effects on learn-
ing a novel rotation. We predicted that if the exposure
phase simply taught participants to use a general aiming

heuristic, then gain and rotation test phase performance
should be similar, with the control group exhibiting a
decreased learning rate relative to these two groups.
However, if participants learn perturbation structure, then
the rotation group will learn much more quickly than either
the gain or control group. We found that participants
exposed to rotation structure during the exposure phase
learned to counter a novel rotation much more quickly
than participants exposed to either a veridical or gain
structure. Remarkably, there was no difference in learning
rate between groups exposed to either veridical or gain
structure, demonstrating that the learning rate benefit
exhibited in the rotation group is a consequence of a
deeper learning of rotation structure rather than the for-
mation of an aiming heuristic which generalizes to other
perturbation structures.

The finding that structural learning is highly dependent
on the statistics of the environment raises the question of
whether transfer between perturbation structures is pos-
sible. Previous work has shown that learning a single gain
perturbation at distal targets eliminates direction-speci-
ficity in rotation generalization, leading to rotation gener-
alization across the entire workspace (Yin et al., 2016). It
is unclear if this finding is consistent with a form of
structural learning or a more general change in sensitivity
to any form of visuomotor error. The source of transfer
between different perturbations remains an open ques-
tion. For example, it could be that a series of shear
perturbations, which would require a remapping of both
the extent and direction of the movement vector to restore
task performance, would improve both gain and rotation
learning. Furthermore, this effect could be unidirectional
such that gain or rotation structure training does not improve
shear learning. Alternatively, structural learning may not nec-
essarily be confined by the mathematical similarities be-
tween perturbations. Instead, the similarity between
adapted responses to given perturbation types may dictate
the degree to which participants generalize between struc-
tures. For example, the adaptive responses to a shear and a
rotation are much more similar than the responses to a gain
and a shear; simply angling the limb to offset the perturba-
tion would aid performance in both of the former perturba-
tions. Further work is necessary to test the specificity of
generalization between different structures.

Conclusions
Overall, our results provide further support for the gen-

eral consensus that explicit re-aiming is an essential com-
ponent of sensorimotor learning in a visuomotor rotation
task and may be responsible for a variety of motor learn-
ing behaviors thought to be largely implicit (Heuer and
Hegele, 2008; Hegele and Heuer, 2010; Taylor et al., 2014;
Bond and Taylor, 2015; McDougle et al., 2015; Morehead
et al., 2015; Brudner et al., 2016; Day et al., 2016; Poh
et al., 2016). There are two primary implications of our
results. First, because rotation structure learning is explic-
itly accessible, it may share a common learning mecha-
nism with rule-based learning in other domains which rely
on abstraction, such as category learning and concept
learning. Correspondingly, it may recruit neural systems
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associated with explicit rule formation in support of adap-
tive behavior, such as the prefrontal cortex and striatum.
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