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Abstract

Human motor learning is useful if it generalizes beyond the trained task. Here, we introduce a new idea about how
human visuomotor learning generalizes. We show that learned reaching movements generalize around where a
person intends to move (i.e., aiming direction) as opposed to where they actually move. We used a visual rotation
paradigm that allowed us to disentangle whether generalization is centered on where people aim to move, where
they actually move, or where visual feedback indicates they moved. Participants reached to a visual target with
their arm occluded from view. The cursor feedback was rotated relative to the position of their unseen hand to
induce learning. Participants verbally reported their aiming direction, reached, and then were shown the outcome.
We periodically introduced single catch trials with no feedback to measure learning. Results showed that learning
was maximal at the participants’ aiming location, and not at the actual hand position or where the cursor was
displayed. This demonstrates that visuomotor learning generalizes around where we intend to move rather than
where we actually move, and thus introduces a new role for cognitive processes beyond simply reducing
movement error.
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Significance Statement

Generalization is an important feature of human motor learning, as movements learned within a specific
environment often apply broadly to unfamiliar environments without further training. Previous work has
produced mixed, and often conflicting, results when studying how the nervous system generalizes learned
movement patterns. Here, we provide a new perspective on motor learning generalization of visuomotor
rotations that reconciles many prior conflicting findings by showing that learned motor patterns generalize
around where we intend to move rather than where we actually move. These findings indicate that new
movements are learned around a cognitive representation of the movement, and demonstrate a new role for
cognitive contributions to motor learning.
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Introduction
Human motor control is impressively flexible; move-

ments learned and practiced within a specific context
often generalize to novel situations (Poggio and Bizzi,
2004). Consider, for example, learning to play golf—while
it is useful to learn to swing a single club appropriately, we
ultimately aim to use the entire set. Fortunately, learning
to swing one club often improves our ability to swing
others, especially those very similar to the club that has
been well practiced (Lam et al., 2010).

Complex actions like swinging a golf club are learned
through interacting mechanisms, some more explicit and
some more implicit. Here we studied how recently learned
movements generalize when they are acquired using a
combination of explicit and implicit learning mechanisms.
These mechanisms are often studied using a visuomotor
reaching task where participants reach for a visual target
while a cursor represents the position of their hand (Maz-
zoni and Krakauer, 2006; Taylor and Ivry, 2011; Taylor
et al., 2014). After some practice, a perturbation is applied
that rotates the cursor position away from the hand po-
sition. Implicit learning changes the relationship between
the hand position and expected cursor location involun-
tarily, and is thought to be driven by sensory prediction
errors (i.e., any discrepancy between the expected and
actual location of the cursor; Tseng et al., 2007). Explicit
learning is characterized by a conscious change in the aim
of the reach and is driven by target error (i.e., any discrep-
ancy between the actual locations of the cursor and the
target; Mazzoni and Krakauer, 2006). Both implicit and
explicit learning change how we move, but only explicit
learning changes how we think we move. Therefore, an
important question remains: does motor learning gener-
alize around how we move or how we think we move?

It has been difficult to answer this question in previous
studies because participants feel that their hand is moving
with the cursor by the end of adaptation, although by this
point it is in fact moving in a rotated direction (Izawa and
Shadmehr, 2011). This makes previous work showing that
learning generalizes narrowly around the target (Ghilardi
et al., 1995; Krakauer et al., 2000; Fernandes et al., 2014)
difficult to interpret, as participants perceive that their
hand is moving directly to the target. Using a paradigm

where aiming landmarks are provided during learning,
participants have knowledge that their hand is rotated
relative to the cursor (Taylor and Ivry, 2011), and thus
willingly aim their reaches away from the target to coun-
teract the perturbation (Taylor et al., 2014). We used this
paradigm to dissociate whether learning generalizes
around the perceived hand position (i.e., aiming) or target
position.

Here we show that, in a situation where participants are
asked to report their aiming location, implicit motor learn-
ing generalizes around the aiming location (i.e., where
they intended to move) rather than the target location (i.e.,
where the cursor moved). We directly measured implicit
learning within the task, whereas most previous work has
inferred it by subtracting the aim from the reaching angle
(Taylor et al., 2014). Across experiments, we tested im-
plicit learning at different points in the workspace, some
closer to the aiming location and some closer to the
target. We found that implicit learning generalizes maxi-
mally at the location where participants most frequently
aimed their reach, suggesting that humans generalize
visuomotor learning around a cognitive construct of how
we think we move rather than how we actually move.

Materials and Methods
Participants

Seventy young, healthy adults were recruited for this
experiment (18 male, 52 female; mean � SD age, 25 � 5
years). All participants provided written, informed consent
prior to taking part in the experiment. The experimental
protocol was approved by The Johns Hopkins Medicine
Institutional Review Board. All participants were right
handed, as confirmed by the Edinburgh handedness in-
ventory, and were free of any neurological and musculo-
skeletal conditions.

Protocol
Participants sat facing a computer monitor (47 � 30

cm) oriented in the horizontal plane at eye level. The
monitor was positioned 30 cm above a digitized touchpad
such that the monitor obscured visual feedback of the
participant’s hand as he/she used a stylus (Intuous 3,
Wacom) to perform center-out reaching trajectories. Vi-
sual feedback of hand trajectories was provided on the
monitor by a circular cursor (3.5 mm in diameter).

Trials began with the participant moving his/her hand
within a starting circle (5 mm in diameter) in the center of
the screen. Prior to positioning the cursor inside the start-
ing circle, participants were provided with information
only about the radial distance of their hand from the
center to prevent them from gaining additional information
about the mapping between hand and cursor position.
After maintaining the cursor position within the starting
circle for 1 s, a green target circle (7 mm in diameter) was
displayed 70 mm from the center and directly ahead of the
starting location (0° location). Participants were instructed
that the goal of the task was to pass their cursor through
the green target by making a fast and accurate reach. All
participants were given end point feedback about reach
direction in the form of a stationary red circular cursor (3.5
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mm in diameter) after the reach exceeded the 70 mm
target distance (Fig. 1A). If the red cursor was within the
diameter of the green target circle, a “ding” sound was
played, indicating a successful trial (i.e., the target had
been hit). Otherwise, a “buzz” sound was played, indicat-
ing that the reach missed the target. If the participant did
not make the reach within 500 ms, a “too slow” auditory
cue was prompted.

Figure 1B shows the experimental paradigm. First, par-
ticipants completed 48 baseline trials with veridical end
point feedback (yellow block). Second, they reached for
eight trials with veridical end point feedback and were
instructed to report the visual landmark toward which they
aimed each reach (green block). This verbally reported
landmark served as our measure of the explicit compo-
nent of learning (Fig. 1A). The consecutively numbered
landmarks were evenly distributed 5.625° apart at the
same radius as the target. The green target was located at
the “0” landmark for all learning trials throughout the
entire experiment (Fig. 1A). Participants then reached for
320 trials with a 45° clockwise (CW) visuomotor rotation
(pink block). Within this block, participants were in-
structed to continue to report their aiming landmark as
they attempted to hit the green target with their red cur-
sor. After the rotation block, the end point feedback and
aiming landmarks were removed for 40 trials to measure
the aftereffect (purple block). Participants were instructed
to aim directly for the green target and were given a
neutral “knock” sound when their movement magnitude
exceeded 70 mm and the trial was over. Finally, partici-
pants performed 40 washout trials in which veridical end
point feedback returned, and they were instructed to aim
directly at the green target (gray block). The participants

were not required to report their intended aiming direction
in the last two blocks.

Importantly, here we also included a direct measure-
ment of implicit learning by collecting “catch trials.” In
past studies, the implicit component of visuomotor adap-
tation was abstracted by subtracting the reported aim
from the reach angle (Taylor et al., 2014)—referred to
herein as “calculated implicit.” This is illustrated in Figure
1A. Here, we assayed the participants’ reported aiming
locations but also collected single catch trials every 40
trials during the rotation block to directly measure implicit
learning. These single catch trials had the same format as
the aftereffect measurement trials (purple block) in that
end point feedback and landmarks were removed, and
participants were instructed to reach to the target. As
is common in aftereffect measurement (Mazzoni and
Krakauer, 2006; Taylor and Ivry, 2011; Taylor et al., 2014),
instructing the participants to aim directly at the target
allows us to control the explicit component of learning
and therefore directly probe the implicit component.
Changing where we presented these catch trials relative
to the trained target location allowed us to characterize
how implicit learning generalized throughout the work-
space. Below, we step through our reasoning for selecting
various locations throughout the workspace to collect
these catch trial and aftereffect measurements.

We first tested a group of participants that was in-
structed to aim at the trained target (i.e., 0° location) for all
catch and aftereffect trials (called the “target group” here).
We noticed an interesting discrepancy between the cal-
culated implicit component and the directly measured
catch trial magnitudes (Fig. 2A, see the difference be-
tween pink and green curves). Given that adaptation is
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Figure 1. Experimental design. A, General setup and convention for aiming landmarks and target. Participants were provided with a
ring of numbered landmarks—spaced 5.625° apart—to report their aim prior to each reach. The target was always presented directly
ahead of the starting location at 0°. The calculation of the implicit component of adaptation was performed by subtracting the
participant’s self-reported explicit aim from the reach angle for each trial. B, Experimental protocol. In the baseline block (yellow),
participants completed 48 trials with veridical end point feedback. In baseline plus report (green), participants practiced reporting their
aim while receiving veridical end point feedback for eight trials. In the rotation plus report, participants were introduced to a 45° CW
visuomotor rotation while still verbally reporting their aiming location for 320 trials. In the aftereffect block (purple), participants were
instructed to reach directly for the target in the absence of both aiming landmarks and end point feedback for 40 trials. The rotation
was removed from these trials to measure the amount of sensorimotor recalibration present. Last, the washout block (gray) restored
veridical end point feedback for 40 trials. No-feedback, no-rotation single catch trials (purple dashed lines) were periodically collected
every 40 trials during the rotation block. These trials had the same format as the aftereffect block (purple).
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thought to generalize maximally around the target location
(Krakauer et al., 2000), why did the calculated implicit
component and catch trial magnitudes, when tested at 0°,
not match?

We developed two competing hypotheses to answer
this question. First, it is possible that the calculated im-
plicit component consistently overestimates the true
implicit learning as measured by our catch trials. Alterna-
tively, the calculated implicit component and catch trial
magnitudes at 0° may differ because learning generalizes
around the aiming location rather than the target location.
For example, consider a participant who aimed at 28° (i.e.,
approximately the “�5” landmark) throughout the majority
of the rotation block while the hand actually moved to a
45° location (i.e. the “�8” landmark). When the participant
is instructed to change their aim to 0° during the catch

trials, our aiming generalization hypothesis predicts that
the catch trial magnitude should be reduced compared
with the calculated implicit component. This hypothesis
then also predicts that the difference between the calcu-
lated implicit component, and catch trial magnitudes
should depend on the location of the catch trials within
the workspace.

Accordingly, we tested several groups to probe the
catch trials and aftereffect at different locations. The cor-
respondence between these direct measures of implicit
learning and our calculated implicit learning will form the
basis for our characterization of the generalization of
visuomotor adaptation. We tested one group with catch
and aftereffect trials at a location close to the approximate
mean reported aiming location among all of the partici-
pants, or 30° counterclockwise (CCW) of the target (“aim”
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Figure 2. Target and aim groups. The catch trials (green) and aftereffect (black) were measured at various locations in the workspace
relative to the 0° target location (key to the right illustrates catch and aftereffect locations relative to the target). Implicit aim (magenta)
was calculated from subtracting explicit aim (red) from reach angle (blue). The light blue shaded areas represent the target area. The
purple shaded region during the aftereffect (trials 377-417) denotes no-feedback trials. The black error bar (trial 377) displays the
magnitude of the first aftereffect trial. Error bars and shaded error regions denote the SEM. A, Target group. The catch trials (green)
and aftereffect (black) were measured at the 0° trained target location. B, Aim group. The catch trials (green) and aftereffect (black)
were measured 30° CCW of the target location, corresponding to the most frequently reported aim location. Moving the catch
trial/aftereffect location to the 30° CCW aiming location removes the offset between the calculated implicit (magenta) and catch trial
measurements (green) when collected at the target location observed in A.
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group). Additionally, we collected two groups where the
catch trials and aftereffects were collected in locations in
opposite directions of the rotation where participants had
neither reached nor aimed throughout the experiment
(“extreme CCW” and “extreme CW” groups). The extreme
CCW group was collected at 60° CCW of the target, while
the extreme CW group was collected at 90° CW of the
target. To explore the effect of cursor location on gener-
alization, we tested a group at a 30° CW location where
the participants had never reached their hand or aimed in
the location of the catch trials, yet had seen the cursor
land in that position (“cursor” group). To explore the effect
of reach location on generalization, we tested a group in
which the catch and aftereffect trials were positioned at
the 45° CCW location relative to the target where partic-
ipants most frequently reached during the rotation block
(“hand” group). Further, we tested a group with the catch
trials at the aiming location (30° CCW) and the afteref-
fect at the target location (0°) to determine whether the
generalization effect can be observed within partici-
pants (“aim/target” group). Each group consisted of 10
participants.

Data analysis
Reach angle was calculated as the hand angle when the
movement trajectory crossed the 70 mm target distance
relative to the starting position. A positive reach angle
indicated that the participant reached CCW of the target.
Over the course of the rotation block, participants cor-
rected for the angular error between the cursor and target
by adjusting their reach angle in the CCW direction. The
optimal compensation for the perturbation was a 45°
reach angle. We calculated the aiming angle by multiply-
ing the participants’ reported landmark numbers by
�5.625° (negative to maintain the sign convention). The
calculated implicit was obtained by subtracting the ex-
plicit aiming angle from the reach angle (Fig. 1A; Taylor
et al., 2014). Reach angle, aiming angle, and calculated
implicit were all binned (n � 4 trials/bin) for analysis and
display. Plateau values for each of these measures were
calculated by averaging the last 100 trials of the rotation
block.

To quantify the extent to which the measured catch
trials matched the calculated implicit component, we cal-
culated the proportion (�) of catch trial i to the calculated
implicit bin collected prior to that catch trial, as follows:

�i �
catch trial magnitudei

mean(calculated implicit)i�4:i�1

To eliminate outliers but still maintain 90% of the data
(441 of 490 values), we eliminated � values greater than
2.3 or less than �2.3, respectively. A one-way ANOVA
with catch trial number as a factor revealed no difference
in � values across catch trials (F(6,434) �0.41, p � 0.87).
This suggested that the discrepancy between the calcu-
lated implicit component and catch trial magnitudes did
not change as a function of trial number. Thus, we aver-
aged these proportions across the seven collected catch
trials for each subject. Because the aim group and aim/

target group experienced identical paradigms until the
start of aftereffect measurement, we combined the data
from the two groups for analysis of the proportion �.
Therefore, the 30° catch trial data contain 20 participants,
while data for all other catch trial locations are composed
of 10 participants. To test whether an offset was present
in each group, we ran one-sample t tests with a null
hypothesis of proportion � equal to 1 (i.e., perfect gener-
alization). The fitted distributions and corresponding R2

values for the cursor, aim, and reach angle during the
rotation block (see Fig. 5, green, red, and gold curves)
were obtained using the curve-fitting toolbox in MATLAB
(MathWorks). Further, we used a one-way ANOVA to
observe the main group effect on the proportion �. Post
hoc analysis to compare individual groups was performed
using Fisher’s LSD method. Our aftereffect analysis was
performed using a mixed-design repeated-measures
ANOVA with time and group as factors.

For our within-subject analysis of generalization, we
built generalization curves for each of the 70 participants.
We calculated the mean magnitude of implicit learning at
every aiming location for each subject. This allowed us to
observe the generalization of implicit learning as partici-
pants aimed farther away from their most frequently re-
ported aiming location during the rotation block. We only
included aiming locations in our analysis where data were
available for �10 of our 70 subjects. Because participants
did not report aiming at all aiming locations (particularly
those far away from their most frequently reported aim),
this inclusion criterion confined our analysis to 40° CCW
and 35° CW of the most frequent aiming location. We
used the fminspleas function within MATLAB (MathWorks)
to fit a cosine function to our within-subject generalization
data. We then performed a correlational analysis of the
generalization of implicit learning and the absolute angle
between the most frequent aim and the actual aim. We set
our � level at 0.05 for all statistical analyses.

Results
Catch trial analysis
In this experiment, we sought to discern whether the
participants learned around where they thought their hand
was going, where their hand was actually going, or where
visual feedback was displayed during a visuomotor rota-
tion task. All participants successfully reached toward the
target at baseline, and there was no group effect on reach
angle during baseline (one-way ANOVA, F(5,64) � 0.46,
p � 0.81) or on reported aim during baseline plus report
(F(5,64) � 1.51, p � 0.20). Similarly, we did not observe any
group effects on reach angle (one-way ANOVA, F(5,64) �
1.45, p � 0.22) or reported aim (one-way ANOVA, F(5,64) �
0.33, p � 0.90) at plateau during the rotation block,
indicating that all participants were able to successfully
achieve the goal of hitting the green target.

At plateau, participants in the target group consistently
hit the target with a mean (�SE) reach angle of 45.04 �
0.28° while reporting an aim of 23.56 � 3.12° (Fig. 2A). As
mentioned in Materials and Methods, we observed an
offset between the measured catch trials and the calcu-
lated implicit component, as the calculated implicit
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consistently overestimated the measured catch trial mag-
nitudes. Participants within this group showed mean �
values of 0.64 � 0.13 (one-sample t test, t(9) � �2.78,
p � 0.02). Previous literature suggests that a portion of
implicit learning decays over short time scales (Miyamoto
et al., 2014). However, further analysis of the intertrial
interval (ITI) prior to the collection of the catch trials and ITI
between normal rotation trials revealed that, regardless of
whether the next trial is a catch trial or a rotation trial, the
ITI was similar (paired t test, t(6) � �0.30, p � 0.78). Thus,
the observed offset cannot be reconciled by the notion
that a greater ITI prior to catch trials leads to a greater
decay of implicit learning. Additionally, we observed no
difference between the magnitude of the last catch trial
(12.26 � 1.53°) and first trial of the aftereffect measure-
ment (12.09 � 1.97°; paired t test, t(9) � 0.09, p � 0.93).

These results prompted us to explore whether the dis-
crepancy between the measured and calculated implicit
component could be due to incomplete generalization
around the target. As such, we altered the paradigm so
that the catch trial and aftereffects were collected 30°
CCW of the target location (Fig. 2B). This location was the
approximate average of the reported aiming location of all
participants in the study. In this aim group, the reported
aim and reach angles plateaued at 27.38 � 3.13° and
45.32 � 0.30°, respectively. The offset between the mea-
sured and calculated implicit components that was ob-
served in the target group was no longer present in the
aim group. The mean � values for this group were 0.92 �
0.11 (one-sample t test, t(9) � �0.70, p � 0.50). When
combined with the aim/target group (discussed further
below), the mean cumulative � values for the catch trials
collected at 30° were 0.97 � 0.09°, indicating that there is
no significant difference between measured and calcu-
lated implicit learning (one-sample t test, t(19) � �0.35,
p � 0.73), and near-perfect generalization.

The hallmark of generalization is that locations farther
away from the trained location show diminished learning
(Krakauer et al., 2000). If implicit learning generalizes
around the aiming location (i.e., 30° CCW of target), we
would expect that the degree to which the catch trial
magnitudes match the calculated implicit component will
decrease as we probe catch trial locations farther from
where the participants concentrated their aim. We tested
the extremes of the pattern of generalization by testing
extreme CCW and extreme CW groups at locations where
participants had neither aimed nor reached throughout
the rotation block—60° CCW and 90° CW, respectively.
By the end of the rotation block, participants in the ex-
treme CCW group aimed at 25.32 � 2.90° while reaching
toward 44.71 � 0.38° (Fig. 3A). The measured catch trial
magnitudes decreased markedly as the mean � values
were 0.27 � 0.15 (one-sample t test, t(9) � �4.78, p �
0.001). These results suggest that, while these partici-
pants showed implicit learning similar to that of the aim
group (�15-20° at plateau), learning did not generalize to
locations in the workspace where they had never aimed or
reached. To examine whether this finding extends to por-
tions of the workspace in the direction of the perturbation,
we tested an extreme CW group. At plateau, these par-

ticipants aimed at 24.23 � 3.73° while reaching toward
45.53 � 0.31° (Fig. 3B). Similar to the extreme CCW
group, we observed a significant offset in the extreme CW
condition with mean � values of 0.50 � 0.16 (one-sample
t test, t(9) � �3.16, p � 0.012).

Perhaps end point feedback of the cursor influenced
the extent to which implicit learning generalizes within the
workspace. Accordingly, we tested a cursor group at a
location where the participants have never reached or
aimed during the experiment, yet had seen the cursor land
in that location (30° CW; Fig. 4A). Aiming and reaching
location plateaued at 25.85 � 2.57° and 45.34 � 0.24°,
respectively. The calculated implicit component signifi-
cantly overshot the measured catch trials with mean �
values of 0.49 � 0.06 (one-sample t test, t(9) � �8.36,
p � 0.001).

Because the participants’ hand movements were cen-
tered around 45° during a vast majority of the rotation
block, we collected a hand group to observe whether the
pattern of generalization was biased by the position of the
repeated motion (45° CCW; Fig. 4B). The aiming and
reaching angle plateaued at 21.48 � 4.38° and 44.36 �
0.54°, respectively. Notably, the observed offset between
calculated and measured implicit learning persisted with a
mean � value of 0.66 � 0.08 (one-sample t test, t(9) �
�4.42, p � 0.002). This result suggests that implicit learn-
ing generalizes incompletely around the repeated reach
location, hinting that we may learn around a cognitive
construct of where we think we are aiming rather than
where our hand actually moves during a visuomotor rota-
tion task.

Using � as our primary outcome measure, we can
further validate the pattern of generalization observed
during this visuomotor rotation task (Fig. 5). A one-way
ANOVA using catch trial location as a factor revealed a
significant difference in � values across conditions (one-
way ANOVA, F(5,64) �5.23, p � 0.0004). Post hoc multiple
comparison analysis using Fisher’s LSD test revealed that
the measured catch trials in the 30° CCW catch trial
conditions (aim and aim/target combined) matched the
calculated implicit to a significantly greater extent than did
the extreme CW (p � 0.003), cursor (p � 0.002), target
(p � 0.033), hand (p � 0.047), and extreme CCW (p �
0.001) conditions. A one-way ANOVA confirmed that the
ITI prior to the collection of catch trials remained consis-
tent across all conditions (one-way ANOVA, F(5,64) � 0.69,
p � 0.63), thus eliminating the concern that implicit learn-
ing may have temporally decayed to a greater degree for
one group than for others. Therefore, participants appear
to learn maximally around their most frequent aiming
location. At this location, independently measured catch
trial findings are consistent with the implicit component
calculated from the reach angle and reported explicit aim.

Aftereffect analysis
In the fourth block of the experiment, we measured the
participants’ aftereffects by removing the cursor feed-
back, visuomotor rotation, and landmarks, and instructing
the participants to aim directly for the green target. The
aftereffect is a measure of the participants’ sensorimotor
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recalibration and arises from an updating of an internal
model (Shadmehr and Mussa-Ivaldi 1994; Wolpert and
Kawato, 1998; Taylor et al., 2014). Indeed, the aftereffect
remains the gold standard for evaluating the degree of
sensorimotor recalibration that results from a visuomotor
adaptation task. We used a mixed-design repeated-
measures ANOVA to evaluate how the degree of implicit
learning varied between catch trial measurements at pla-
teau (last two catch trials) and early aftereffect measure-
ment (first four trials) in addition to the group effects on
the difference between the two measures. There were
main effects of time (mixed design, repeated-measures
ANOVA, F(1,63) � 15.11, p � 0.001) and group (mixed
design, repeated-measures ANOVA, F(6,63) � 4.20, p �
0.001), as well as a significant interaction (mixed design,
repeated-measures ANOVA, F(6,63) � 3.85, p � 0.002).
Post hoc analysis revealed a significant pairwise differ-
ence between the catch trial magnitude at plateau and
early aftereffect in the aim/target condition (p � 0.001;
Fig. 6); otherwise, the remaining conditions did not display
a difference between catch trial and aftereffect magni-
tude. Interestingly, these results suggest that the gener-
alization effect we observed across conditions also can

be observed within participants because we observe a
significant within-subject difference in the degree of sen-
sorimotor recalibration as we probe different locations in
the workspace.

Within-subject analysis
To further characterize the within-subject generalization,
we built generalization curves for each of the 70 partici-
pants across all groups. Figure 7 reveals that, as partici-
pants aimed farther from their most frequently reported
aiming location, the magnitude of implicit learning de-
creased. Thus, implicit learning generalized maximally at
each individual’s most frequent aiming location and de-
cays as a function of angle away from that aiming loca-
tion. The best-fit cosine curve to our within-subject
generalization data was centered at 1.16°. This phase
shift confirms that the generalization of implicit learning
was centered on the most frequent aiming location (Fig.
7A, 0°). To quantify this relationship, we used a correla-
tional analysis that showed significant correlation be-
tween implicit learning magnitude and the absolute value
of the angle away from the most frequent aiming location
(Fig. 7B; correlation coefficient � �0.89, p � 0.0029).
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Discussion
Generalization is a critical feature of motor adaptation, as
movement patterns adapted within a specific context can
carry over more broadly to novel situations. However, how
the nervous system generalizes newly adapted movement
patterns from trained to untrained environments has been
a puzzling question due to mixed results in the literature.
Generalization has been thought to be maximal at the
trained target location (Ghilardi et al., 1995; Krakauer
et al., 2000; Brayanov et al., 2012; Fernandes et al., 2014),
the movement direction (Gonzalez Castro et al., 2011),
and the planned motor output (Hirashima and Nozaki,
2012), among others. Here we show that visuomotor ad-
aptation generalizes around a cognitive construct of how
we think we move, not around characteristics of the
movement or learning environment, as previously
thought. Specifically, we found that visuomotor adapta-
tion generalized maximally at the location where partici-
pants most frequently aimed their reaches—not the target
location or the location where they most frequently

reached. Interestingly, this phenomenon holds both be-
tween and within subjects. These findings provide new
evidence for an important role of cognitive processes in
the generalization of visuomotor adaptation.

Research has recently begun to explore the influence of
explicit cognitive processes on motor adaptation, a motor
learning process long thought to be largely cerebellar
mediated. To quantify explicit contributions to motor ad-
aptation, previous work assayed the self-reported reach-
ing aim from participants while they adapted to a
visuomotor rotation. In that work, the authors assumed
that implicit learning was represented by any change in
cursor position unaccompanied by a similar change in the
explicitly reported aim (Taylor et al., 2014). Here, we
implemented a more direct measurement of implicit learn-
ing by interspersing no-feedback catch trials throughout
the adaptation block. In our study, as expected, all par-
ticipants showed monotonic implicit learning as calcu-
lated by subtracting their reported aim from their reaching
angle during adaptation (Taylor et al., 2014). However, the
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implicit learning measured directly in the catch and after-
effect trials consistently undershot the calculated implicit
learning in nearly all testing locations. Only when the
catch and aftereffect trials were located precisely at
the participants’ aiming locations did our direct measure-
ments of implicit learning align with the indirect measure-

ment used previously. Accordingly, we posit that these
results indicate a striking generalization pattern that is
centered around the participants’ intended reaching tra-
jectories (i.e., aim).

These findings provide a unifying framework to recon-
cile mixed behavioral findings from previous work. For
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example, a previous study found that adaptation gener-
alizes around the target location (Krakauer et al., 2000).
However, we suggest that what appeared to be general-
ization around the target actually may have been gener-
alization around the aiming location. We think this
because participants often report that they are reaching
directly to the target by the end of the adaptation block
when only the target is present (Izawa and Shadmehr,
2011). Thus, it seems likely that the target and aiming
locations overlapped in the study by Krakauer et al.
(2000), making it difficult to dissociate them. Our findings
also clarify the results of other studies reporting that
adaptation generalizes at a location other than the target
(Heuer and Hegele, 2008, 2011). For instance, Heuer and
Hegele (2008) observed that adaptation generalized
around a location 45° counterclockwise of the target di-
rection following a 75° clockwise rotation. Interestingly,
this 45° shift in the generalization pattern corresponded to
the approximate magnitude of the explicit learning shift
that the authors observed. Thus, this explicit aim, albeit
collected in a slightly different manner from the current
study, appears to be the center of generalization, an
observation that is consistent with our results. Recent
work (Gonzalez Castro et al., 2011) has suggested that
motor adaptation is motion referenced rather than plan
referenced. While this previous work used force-field
learning to dissociate actual and planned movement,
there was no dissociation between actual and intended
movement (i.e., aim). In Gonzalez Castro et al. (2011), it
was assumed that the participants’ plan was to move
directly to the target, but recent studies have shown that

participants do not aim directly to the target during
learning (Taylor et al., 2014; Bond and Taylor, 2015;
McDougle et al., 2015; Morehead et al., 2015). If par-
ticipants were aiming in a direction away from the
target, then the unmeasured aim direction and the ac-
tual motion direction may have been overlapping, lead-
ing them to the belief that a motion-based reference
frame was more consistent with the generalization pat-
tern. It is important to note, however, that the neural
mechanisms underlying adaptation to a dynamic per-
turbation differ from those underlying adaptation to a
kinematic perturbation (Flanagan et al., 1999; Krakauer
et al, 1999). While we should remain cautious in making
direct comparisons of the current results to those ob-
tained using a dynamic perturbation, we suggest here
that learning a visuomotor rotation task may in fact
occur in a plan-based or aim-based frame once we
unconfound all of the reference frames.

The results here also predict that one could learn two
different sensorimotor mappings that overlap either target
location or hand paths, provided that the aiming direction
is sufficiently far apart to prevent catastrophic interfer-
ence. Indeed, a recent study (Hirashima and Nozaki,
2012) found that participants were able to counter oppos-
ing perturbations despite sharing the same direction of
hand motion, although planned movement and target
directions were conflated. Future work that dissociates
planned aiming direction from target location, as well as
hand location, is needed to determine the extent to which
the pattern of generalization is dependent on trial-by-trial
fluctuations of aim.
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Figure 7. Within-subject generalization. For each participant, the mean implicit learning magnitude was calculated at each reported
aiming location. Aiming locations that had data available for �10 of 70 subjects were included. A, Implicit learning magnitude for all
70 subjects. Data for individual subjects were centered on their most frequently reported aiming locations. Thus, 0° here denotes the
aiming location that the subject reported most frequently during the rotation block. The green curve denotes a best-fit cosine function.
B, Correlational analysis revealed a negative correlation (correlation coefficient � �0.89, p � 0.0029) between the absolute angle
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angles shown in A. As participants reached farther from their most frequently reported aim, the generalization of implicit learning
decays. The black trace is a best-fit linear regression (R2 � 0.796). Error bars denote the SEM.

New Research 10 of 12

March/April 2016, 3(2) e0005-16.2016 eNeuro.sfn.org



An interesting phenomenon observed in our data is the
lack of symmetry in the between-subject generalization
curve. We found a sharper decline in generalization in the
direction opposite to the perturbation. We interpret these
results by considering that participants made hundreds of
consecutive reaches to the same location. Several previ-
ous studies have shown that movements following a se-
ries of repeated movements are biased in the direction of
repeated motion, a process known as use-dependent
plasticity (Diedrichsen et al., 2010; Huang et al., 2011).
Here, the repeated hand motion is at 45° counterclock-
wise of the target. Catch trials that were collected at
angles counterclockwise of the 45° reach direction were
biased in the clockwise direction, appearing as reduced
generalization. Conversely, catch trial measurements
clockwise relative to the 45° repeated motion were biased
in the counterclockwise direction, thus appearing as
greater generalization. Both of these results can be ex-
plained by use-dependent plasticity driving the reach
closer to the repeated direction of movement.

Our data have implications for the interpretation of
computational models of motor control. Because we find
that generalization is centered around the aiming location,
the representation of learning is centered about a more
abstract level for each individual and, importantly, does
not appear to be tied to any measurable task dimension
(e.g., hand path or target location). Consequently, at-
tempting to extract motor learning principles from a par-
ticular generalization function may prove difficult if
individuals have idiosyncratic and/or faulty strategies
(Taylor et al., 2014). Such idiosyncrasy may account for
the vast range of patterns of generalization in the litera-
ture, which were previously thought to be a reflection of
the influence of mixed reference frames (Brayanov et al.,
2012; Berniker et al., 2013), environmental statistics
(Thoroughman and Taylor, 2005), and context depen-
dency (Taylor and Ivry, 2013) on generalization. This is
especially challenging for neural network models, which
have sought to infer the properties of the underlying neu-
ral representation from the pattern of generalization but
have relied on centering learning about target position
(Thoroughman and Shadmehr, 2000; Donchin et al., 2003;
Thoroughman and Taylor, 2005; Tanaka et al., 2009; Pear-
son et al., 2010; Brayanov et al., 2012; Taylor et al., 2013).
Our findings here suggest that these models would need
to update the network based on a more cognitive repre-
sentation of where participants aim to move. Because
aiming can change rapidly from trial-to-trial, the represen-
tation would also be rapidly changing and highly dynamic
both within an individual and between individuals, making
it exceedingly difficult to infer a consistent underlying
representation using the neural network approach. Gain-
ing a better understanding of the cognitive influences on
motor adaptation will be crucial to the appropriate imple-
mentation of computational and neural network models
used to explain the behaviorally observed generalization
patterns.

In conclusion, we have shown that visuomotor adapta-
tion generalizes around a cognitive construct of how we
think we move. This finding reconciles a series of seem-

ingly contradictory reports on how the nervous system
generalizes adapted motor patterns and further under-
scores the importance of cognitive contributions to motor
adaptation. There is obvious interplay between the cog-
nitive and implicit processes involved in motor adaptation
(Mazzoni and Krakauer, 2006; Taylor et al., 2014); here,
we have demonstrated that the two are not merely en-
gaged in a simple give-and-take relationship to achieve
task goals, but rather the implicit sensorimotor recalibra-
tion that defines visuomotor adaptation is learned around
the cognitive representation of the movement.
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