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Explicit and Implicit Processes Constitute the Fast and Slow
Processes of Sensorimotor Learning

X Samuel D. McDougle,1,2 Krista M. Bond,1 and Jordan A. Taylor1,2

1Department of Psychology and 2Neuroscience Institute, Princeton University, Princeton, New Jersey 08544

A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical
learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes
that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes
are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a
computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates
implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor
memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to
describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in
the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor
learning.
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Introduction
Learning is rarely the result of a single process—it more often
transpires by virtue of a chorus of distinct processes. Many stud-
ies have focused on dissociating various operations involved in
learning and memory, such as model-based and model-free rein-
forcement learning (Daw et al., 2005; Gläscher et al., 2010), in-
tentional and automatic forms of memory (Jacoby, 1991), and
rule-based versus information-integration category learning
(Ashby and Maddox, 2005). In fact, this multiple-process ap-
proach can be found in James’ (1890) meditations on habit versus
“volitional deliberation.”

A multiple-process framework also has appeared in the motor
learning literature. In an influential demonstration, Smith et al.
(2006) showed that there appear to be at least two processes with
distinct timescales operating simultaneously while humans learn
to counter a sensorimotor perturbation. Evidence for these pro-
cesses was collected through an experimental design (Fig. 1A) in
which participants first learned to counter a particular force field
for a long period of time and then that force field reversed direc-
tion unexpectedly for a shorter period, after which they reached

in a visually error-free “error-clamp” condition designed to
probe motor memory without significantly altering it. Curiously,
in the error-clamp condition, participants demonstrated sponta-
neous recovery of their memory of the first force field. Therefore,
the memory of the first perturbation was not erased, but rather
was masked by the second (Pekny et al., 2011). Smith et al. (2006)
modeled two processes to explain this phenomenon: a “fast” pro-
cess, which learns to reduce errors rapidly but also forgets rapidly,
and a “slow” process, which learns to reduce errors slowly but
forgets slowly (Fig. 1B).

Although a number of studies have pointed to potential neural
substrates corresponding to these processes (Smith et al., 2006;
Galea et al., 2011; Choi et al., 2014; Yang and Lisberger, 2014), a
mechanistic account of the psychological underpinnings of the
fast and slow process remains elusive. Most accounts consider
these processes to be facets of error-based adaptation, mapping
onto forward and inverse models (Izawa et al., 2012) or environ-
mental and body-based learning (Berniker and Kording, 2011).

Alternatively, our work suggests that explicit aiming strategies
and implicit motor adaptation may underlie the fast and slow
processes (Taylor et al., 2014). By having participants explicitly
state an aiming direction toward visual landmarks during a
visuomotor learning task (Fig. 1C), trial-by-trial shifts in aiming
strategies can be measured. Subsequently, the direction of aim
can be subtracted from participants’ reach directions to quantify
implicit learning. The time courses of explicit and implicit learn-
ing revealed by this methodology appeared to mirror the time
courses of the fast and slow processes (Taylor et al., 2014).

We set out to confirm whether explicit and implicit learning
correspond to the fast and slow processes. In Experiments 1 and
2, we tested this hypothesis in two common motor learning par-
adigms: force field learning and visuomotor rotations. In Exper-
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iments 3 and 4, we provide evidence for
two separate, temporally insensitive facets
of implicit sensorimotor learning.

Materials and Methods
Participants. Ninety right-handed participants
(mean age 21 years, range 18 –33, 52 female)
were recruited from the research participation
pool maintained by the Department of Psy-
chology at Princeton University in exchange
for course credit. Handedness was verified us-
ing the Edinburgh handedness inventory (Old-
field, 1971). One participant was excluded for
not complying with task instructions in Exper-
iment 2. The protocol was approved by the
Princeton University’s Institutional Review
Board and all participants provided informed
consent.

Experimental apparatus and general proce-
dures. In Experiment 1, participants made
center-out, horizontal reaching movements
while holding onto the handle of a robotic ma-
nipulandum (KINARM; BKIN Technologies).
Movement trajectories were sampled at 1000
Hz. At the beginning of each trial, the manipu-
landum guided the participant’s hand to a
starting position in the middle of the display.
After maintaining this position for 250 ms, the
participant was instructed to make a rapid hor-
izontal reaching movement to land the cursor
(3 mm radius, online feedback) inside a small
circular target (5 mm radius; 10 cm from start
point). If the cursor passed the invisible ring
containing the target within 500 ms, the move-
ment was deemed fast enough and the cursor
turned red; otherwise, the cursor turned blue.
If the center of the cursor landed within the
target, the target filled in green; if not, the target
remained empty.

In Experiments 2– 4, participants made
center-out, horizontal reaching movements to
visually displayed targets (7 mm radius), mov-
ing their right hand across a digitizing tablet
while holding onto a digitizing pen (Intuos
Pro; Wacom). Movement trajectories were
sampled at 100 Hz. The stimuli were displayed
on a 17-inch LCD computer monitor (Dell)
mounted horizontally 25 cm above the tab-
let. The monitor occluded vision of the hand
and a small, circular cursor (3.5 mm radius)
provided continuous online visual feedback
during each reach. The task was controlled
by custom software written in Python
(http://www.python.org).

At the start of each trial, participants were
required to position their hand in a central
starting position with the aid of a visual ring,
which represented the distance between the
hand and the starting position. After main-
taining this position for 1 s, a green visual
target appeared. After leaving the starting
position, the participant’s hand had to cross
an invisible ring that contained the target in
500 ms to avoid a “too slow” warning deliv-
ered aurally to the participant automatically
by the game software. If the center of the cur-
sor landed within the target, a pleasant “chime”
sounded; otherwise, a “buzz” sounded. Partic-
ipants in all experiments were told to make

Figure 1. A, Perturbation schedule for all experiments, similar to Smith et al. (2006). Perturbations are normalized at 1/�1 for
illustrative purposes. There were no perturbations in the baseline block (white), clockwise perturbations in the R1/F1 block (blue),
counterclockwise perturbations in the R2/F2 block (green), and error clamp in the EC block (gray). B, Simulations of the two-state
model of sensorimotor learning. Note that the fast process (solid black line) learns at a fast rate but has low retention and the slow
process (dashed black line) learns at a slow rate but has high retention. Motor output was defined as the combination of the fast
and slow process (purple line). C, Task display. In the Report conditions, participants verbally report, before each movement, where
they planned to aim to make the cursor land on the target. In the Report condition of Experiment 1, the numbers are displayed in
a 180° arc. In all experiments, participant’s vision of their hand was occluded.
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sure to reach within the time limit on each trial and to try to land the
cursor in the target on every attempt.

Experiment 1. Participants (n � 20) learned to counter a viscous force
field (curl field) to hit a single target positioned at 90°, 10 cm in front of
the start point. Participants were placed in one of two conditions: a
Control condition (n � 10) and a Report condition (n � 10). The trial
design in both conditions was identical (Fig. 1A). The first 100 trials were
baseline trials in which cursor feedback was veridical. On trials 101–300
(F1 epoch), a clockwise force field perturbation was applied to the ma-
nipulandum. On trials 301–320 (F2 epoch), a counterclockwise force
field was applied to the manipulandum. In trials 321– 420 (EC epoch), a
physical error clamp was introduced, guiding participants’ reaches to the
target. In addition, a randomly chosen 10% of trials in the baseline and F1
epochs were error-clamp trials, matching similar conditions in Smith et
al. (2006) except that we also included a single error-clamp trial in the F2
epoch.

During force field trials, the motors of the robotic manipulandum
applied a force (f ) to the hand. The strength of these forces was propor-
tional to the velocity ( V) of hand motion and force direction was per-
pendicular to hand motion as follows:

M � �0 30; �30 0�N/s/m (1)

f � M�VxVy� (2)

Where M is a force matrix applied to velocity vector V. In the first force
epoch (F1, trials 101–300), the force field pushed the hand in a clockwise
direction. In the second force epoch (F2, trials 301–320), the matrix M
was multiplied by �1, producing a counterclockwise perturbation. Dur-
ing the error-clamp trials, a force channel was applied to the hand via a
simulated spring (6 kN/m) and damper (20 N/s/m) perpendicular to the
target direction, guiding the participant’s hand to the target and limiting
deviations from a straight path to the target (mean reach endpoint devi-
ation from target during error-clamp trials � 0.22° � 0.13°).

The task instructions in the Report condition were similar to that of
Taylor et al. (2014). For the first 320 trials, the target was flanked by a 180°
arc of numbered visual landmarks spaced 4.25° apart. Starting at trial 91
of the baseline epoch, participants were instructed to report verbally
before each reach the landmark that they planned to push the manipu-
landum toward to make the cursor hit the target. The experimenter
manually recorded the reported aiming directions and we refer to these
data as explicit learning. The basic experimental procedure was identical
in the Control condition, but landmarks were not present and no report-
ing was required.

Experiment 2. A recent method from our laboratory has shown that, in
visuomotor rotation tasks, explicit and implicit components of sensori-
motor learning can be isolated (Taylor et al., 2014). Therefore, we de-
signed an experiment with the same trial structure as Experiment 1, but
used visuomotor rotations rather than force fields. Participants were
placed in either a Control condition (n � 9, one participant excluded) or
a Report condition (n � 10) and reached toward a single target located at
0°. The trial design in all conditions was identical (Fig. 1A). The first 100
trials were baseline trials in which cursor feedback was veridical. On trials
101–300 (R1 epoch), the cursor was rotated by 45° in the clockwise
direction. On trials 301–320 (R2 epoch), the cursor was rotated by 45° in
the counterclockwise direction. In trials 321– 420 (EC epoch), a visual
error clamp was placed on the cursor, making it move straight to the
target regardless of the participant’s hand trajectory orthogonal to the
target. The instructions and visual display in the Report condition only
differed from Experiment 1 in that the spacing constant between the
visual landmarks was larger (5.625°) and the numbers were arranged in a
360° ring rather than a 180° arc (Fig. 1C). In contrast to Experiment 1, in
this rotation task, participant’s hand position and reported aiming direc-
tion were in comparable units; therefore, we could quantify implicit
learning by subtracting the explicit component from participant’s move-
ment directions on each trial (Taylor et al., 2014; see “Movement analy-
sis” section).

In all conditions, after the end of the second rotation epoch (trial 320),
participants were told to stop using any potential aiming strategy that
they had developed and reach directly for the green target for the remain-

der of the session (EC epoch). This allowed us to measure the size of
aftereffects without an added aiming strategy, which conflate the size of
aftereffects (Taylor et al., 2014).

Experiment 3. It has been suggested that the amount of sensorimotor
adaptation that occurs for movements to specific regions of space is
sensitive to the time elapsed between consecutive movements (Brennan
et al., 2012; Hadjiosif and Smith, 2013). In this experiment, we manipu-
lated the duration of an experimentally forced intertrial interval (ITI) to
test this theory. Participants were placed in one of three conditions: 0 s
forced ITI (n � 10), 15 s forced ITI (n � 10), and 30 s forced ITI (n � 10).
After each trial, the screen turned black and subjects waited for a fixed
number of seconds (based on condition) before they were prompted to
find the start point and begin the next trial.

The trial design in all conditions was identical and only a single target
direction was used. However, to avoid unreasonably long sessions due to
the added delays, the number of trials was reduced relative to Experi-
ments 1 and 2, but the ratio of the number of trials in the two rotation
blocks was maintained. The first 15 trials were baseline trials. On trials
16 –115 (R1 epoch), the cursor was rotated by 45° in the clockwise direc-
tion. On trials 116 –125 (R2 epoch), the cursor was rotated by 45° in the
counterclockwise direction. Trials 126 –145 were error-clamp trials (EC
epoch). The instructions and visual display in this experiment were iden-
tical to that of the Report conditions of Experiment 2. Note that, because
the forced ITIs differed between conditions, the total duration of the
experiments differed between the 0, 15, and 30 s ITI conditions and were
�15, 50, and 90 m, respectively.

Experiment 4. Findings from Experiments 2 and 3 inspired a hypoth-
esis that our measured implicit learning curve is composed of an addi-
tional process that is relatively time insensitive. This additional implicit
process may be akin to an operant, use-dependent process that is driven
by repeated movements to one area of space (Huang et al., 2011; Ver-
stynen and Sabes, 2011). To test this idea, participants were exposed to
several different target locations instead of a single location. Participants
were equally divided between two conditions: a Full workspace condition
(n � 10) and a Partial workspace condition (n � 10). In the Full condi-
tion, the target could appear at one of eight locations separated by 45°
along an invisible ring with a radius of 7 cm (0°, 45°, 90°, 135°, 180°,
�135°, �90°, and �45°). In the Partial condition, the target locations
were restricted to 1/4 of the circular workspace along an invisible wedge
centered at 0° (�45°, �32.1°, �19.3°, �6.4°, 6.4°, 19.3°, 32.1°, 45°).
Importantly, both conditions had the same number of targets and only
differed in the breadth of training across the workspace. In both condi-
tions, the sequences of target locations were pseudorandomly presented
within each epoch such that, in each “cycle” of eight trials, all eight targets
were seen exactly once before being repeated. Each participant received a
different randomized sequence of target locations. The pseudorandomized
sequences were truncated at their ends in the three epochs with lengths that
were not multiples of eight (baseline, R2, EC). The procedure was otherwise
identical to that used in the Report condition of Experiment 2.

Movement analysis. Kinematic and statistical analyses were performed
using customized scripts in MATLAB (The MathWorks) and R (R Foun-
dation for Statistical Computing). For Experiment 1, we focused on the
lateral force produced by the hand during error clamp trials, which were
interspersed throughout all the epochs of the task, since the error clamp
minimizes inertial and reactionary forces. Lateral force was measured by
the robot’s force sensor throughout the movement. To quantity the de-
gree of learning during the error clamp trials, we computed an adaptation
index defined by regressing the lateral force profile produced by the hand
(while hand speed exceeded 2.5 cm/s) onto the ideal force profile which
would be required to move in a straight line during force field trials (see
Smith et al., 2006 for details). An additional metric, hand heading angle,
was measured by taking the angle of the hand midway through the move-
ment (5 cm). Reaction time was calculated by measuring the time elapsed
between the appearance of the target and the point at which the hand was
moving at least 5 cm/s. For the error-clamp trials mentioned above, we
analyzed participants’ force trajectory profiles by plotting both the mean
lateral force produced by participants for the first 6 cm of their move-
ment, as well as the mean ideal velocity-dependent lateral force needed to
counteract the force field for those same movements. The full movement
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was not used because marked between-subject differences in velocity
during the second half of reaches adds noise to the calculation of full ideal
force profiles.

To assess task performance in Experiments 2– 4, we focused on the
intermediate heading angle of the hand rather than final cursor locations
to limit the role of corrective movements in our measure of learning. The
average heading angle was computed as the angle midway along the
trajectory (3.5 cm). All reach trajectories in the two eight-target condi-
tions (Experiment 4) were rotated to a common axis with a target loca-
tion of 0°. Reaction time was calculated by measuring the time elapsed
between the appearance of the target and the point at which the hand was
1 cm from the starting region. To visualize movement trajectories in all
experiments, we plotted the mean reach trajectory over the last two error-
clamp trials in the baseline, the first two in R1/F1, the last two in R1/F1,
the single error clamp in R2/F2, and the first two in EC.

For primary statistical analyses in Experiment 1, we focused on the
adaptation index and lateral force during four different epochs of the
session as follows: F1 early (first error clamp trial), F1 late (last error
clamp), F2 (single error clamp), and EC (average of the first five trials of
the EC epoch). For Experiments 2– 4, we focused on the same epochs, but
binned the heading angle for each participant as follows: R1 early (the
first five trials of R1), R1 late (the last five trials of R1), R2 (the last five
trials of R2), and EC (the first five trials of the EC epoch). For aiming
data, the EC epoch was not analyzed in Experiments 2– 4 because partic-
ipants were instructed to aim directly at the target during that epoch and
ceased reporting. Further, in our analysis of aiming data, the R1/F1 early
epoch started one trial after the first report because participants were
abruptly presented with the perturbations and were thus not using any
aiming strategy on the initial trial.

For all reported and depicted values, we report the mean and SEM. For
statistical analyses that require pairwise multiple comparisons, we used
the Bonferroni correction.

Model simulations and fitting. In the standard state-space model of
motor learning, the output (x) of the motor system is updated at each
time point (t) according to a learning rule:

et � xt � pt (3)

xt�1 � Axt � Bet (4)

Where e is the error experienced at time t involving perturbation p, A is
the retention factor of the previous state, and B is the learning rate.

Smith et al. (2006) outlined a “fast” process (F, Eq. 5) that allows for
the rapid learning of each perturbation and a “slow” process (S, Eq. 6)
that has not fully unlearned the first perturbation at the time of the error
clamp. The two processes are combined to produce the final output x
(Eq. 7). This two-state model postulates separate retention factors and
learning rates for each process as follows:

xt�1
F � AFxt � BFet (5)

xt�1
S � ASxt � BSet (6)

xt � xt
F � xt

S (7)

Where AF 	 AS and BF 
 BS.
We simulated the output of the two-state model of motor learning

described in Equations 5–7 with manually adjusted parameter values

approximately corresponding to simulations performed in Smith et al.
(2006) (Fig. 1B). Perturbations used in the error term (Eq. 3) were nor-
malized values (�1/1). All updating of motor output (x) was clamped at
zero in the EC epoch for all simulations.

For model fitting, we fit the two-state model to both the adaptation
index and lateral force during error clamps for both the Report and
Control conditions of Experiment 1. For Experiment 2, we fit the heading
angles in both the Report and Control conditions. For the Report condi-
tion of Experiment 2 and all groups in Experiment 4, the outputs of the
fast and slow processes were fit to the time series of explicit and implicit
learning, respectively. For Experiment 4, the state x was assumed to be
independent of target location.

The model was fit to minimize the rms between the model simulation
and participant data using the fmincon function in MATLAB. For model
fitting, the model was constrained such that AF 	 AS, and BF 
 BS (Smith
et al., 2006) and, in Experiment 1, AS was constrained to be 
 0.9. The
stability of the model fits and the sensitivity of the initial conditions were
tested using a grid search over different starting parameter values. We
found that the model fits were consistently highly stable within our con-
straints. rms and correlation coefficients for all model fits are presented
in Table 1.

Results
Experiment 1
Participants in Experiment 1 performed a force field learning task
and were divided into a Report and Control condition. The aver-
age of participants’ median reaction times over the experiment
differed significantly between the Control (305 � 23 ms) and
Report (606 � 90 ms) conditions (t(18) � 3.25, p 	 0.005), as
predicted. This difference was expected because participants in
the Report condition were required to pause and state an aiming
direction before moving on the majority of trials. Both groups
performed similarly in the task and there was no significant dif-
ference in heading angle during the baseline epoch (t(18) � 0.25,
p � 0.81). To measure task performance, we conducted a mixed
factorial ANOVA on participants’ mean hand heading angles
only on the early and late first force epoch (F1) and the second
force epoch (F2) because reaching path deviations were clamped
near zero for the EC epoch. We found no significant main effect
of condition (F(1,18) � 0.48, p � 0.50), a significant effect of trial
epoch (F(2,37) � 27.85, p 	 0.001), and no significant interaction
(F(1,9) � 0.46, p � 0.64).

To get a more detailed measure of learning, we focused on the
adaptation index between the two conditions (Fig. 2A). After
observing the relatively long interval that it took for error-clamp
rebound to occur in both conditions (Fig. 2A), we added, a pos-
teriori, an additional time point consisting of the last five EC trials
(EC late). We found no significant main effect of condition
(F(1,18) � 0.68, p � 0.42), a significant effect of trial epoch (F(4,35)

� 29.90, p 	 0.001), and no significant interaction (F(4,18) � 0.81,
p � 0.52). Rebound in the EC epoch did not show any clear decay
back to zero and remained elevated relative to the baseline epoch.
We also examined the pure lateral force midway through the

Table 1. Mean fit parameter values for the retention factors of the fast (AF) and slow (AS) processes and the learning rates of the fast (BF) and slow (BS) processes

AF AS BF BS rms R

Experiment 1 (Control) 0.52 � 0.22 0.97 � 0.02 0.22 � 0.14 0.03 � 0.02 0.11 � 0.03 0.79 � 0.14
Experiment 1 (Report) 0.56 � 0.19 0.98 � 0.01 0.38 � 0.14 0.02 � 0.02 0.14 � 0.03 0.88 � 0.02
Experiment 2 (Control) 0.85 � 0.08 0.99 � 0.00 0.44 � 0.06 0.05 � 0.02 8.85 � 1.75 0.92 � 0.04
Experiment 2 (Report) 0.83 � 0.10 0.98 � 0.04 0.61 � 0.14 0.10 � 0.10 11.07 � 2.28 0.91 � 0.03
Experiment 4 (Full) 0.96 � 0.01 1.00 � 0.00 0.53 � 0.18 0.02 � 0.01 11.01 � 1.20 0.88 � 0.06
Experiment 4 (Partial) 0.84 � 0.12 0.98 � 0.05 0.39 � 0.10 0.09 � 0.07 15.71 � 2.65 0.80 � 0.07

Quality of model fits are also shown, quantified by rms and the correlation coefficient R. See Materials and Methods for model details and fitting procedures. Averages of fit parameter values, rms of fits, and correlation coefficients of fits with
95% confidence interval.
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movement (5 cm) in the error clamp trials over the same epochs
and we found no significant main effect of condition (F(1,18) �
2.29, p � 0.15), a significant effect of trial epoch (F(4,35) � 25.68,
p 	 0.001), and no significant interaction (F(4,18) � 0.19, p �
0.94). Last, force trajectories in error clamp trials (Fig. 2C,D)
showed that, whereas learning progressed in a similar fashion
between groups, overall force magnitude appeared to be slightly
larger in the Report group (Fig. 2D) compared with the Control
group (Fig. 2C). We suspect that aim reporting encouraged the
Report group to apply a wider range of forces to the robot than
the Control group, but this difference did not affect the overall
shape of the learning curve (Fig. 2A).

All participants in the Report condition aimed to locations
other than the target during F1, F2, and the earliest portion of the
EC epoch (Fig. 2B). We performed a repeated-measures ANOVA
on five epochs of aiming data— early and late F1, late F2, and
early and late EC. There was a main effect of trial epoch on aiming
angle (F(4,36) � 10.38, p 	 0.001) and post hoc t tests (Bonferroni-
corrected) revealed significant differences between F1 early and
F2 (p 	 0.001), F1 early and EC early (p 	 0.01), F1 late and F2
(p 	 0.001), F1 late and EC early (p 	 0.001), and F2 and EC late
(p 	 0.001). The average aiming time course (Fig. 2B) displays
clear rapid early learning and a rapid flip in sign during the coun-
ter perturbation, suggesting that an explicit aiming process is at
play during force field learning. Further, the rapid decay in aim-
ing during early EC seen in this group approximately matches the
decay of the simulated fast process shown in Figure 1B; in a force
field learning task, participants appeared to stop aiming to loca-
tions other than the target rapidly when errors were removed
(Fig. 2B).

In a previous study (Taylor et al., 2014), we quantified implicit
learning by subtracting the reported aiming angle from the
movement heading angle for each trial. Here, we could not con-
duct an assay of implicit learning because a subtraction measure-
ment is abstruse: participants were not reporting where they
planned to pass their hand through the target ring as they do in
visuomotor rotation tasks; rather, they were asked to report
where they thought they needed to push the robotic manipulan-
dum to get their cursor on target. Critically, in the force field task,
the hand must actually pass through the target position for task
success on all trials, unlike in a rotation experiment, in which the
cursor and hand are separated by an applied perturbation. There-
fore, a subtraction to infer implicit learning is unreasonable be-
cause explicit learning and force are not along the same
dimension. We will address this issue directly in Experiment 2,
which is better suited to assay both explicit and implicit learning.
Although our explicit metric could not be used in a subtraction,
our results nonetheless show that participants are likely using
some form of explicit strategy when counteracting a force (Fig.
2B).

Finally, we fit the adaptation index from the Control and Re-
port conditions with the two-state model. The model fits were
similar for both groups, capturing the rapid learning in R1, the
sign change in force during R2, and the aftereffect in EC (Fig. 3).
Note that the decay of the fast process in the model fit for the
Report condition is similar to the decay of that group’s reported
aiming angles during the early portion of the EC epoch (Figs. 3B,
2B). There were no significant between-group differences in fit-
ted parameter values for any of the four parameters (Table 1).

Figure 2. Experiment 1 behavioral results. A, Adaptation index for the error clamp trials. Note that participants rapidly flip the sign of their applied force during F2 and show rebound of forces
appropriate for F1 during the EC epochs. B, Participants in the Report condition report aiming directions that are appropriate to the applied forces in both the F1 and F2 epochs and quickly decay to
0° of aiming in the EC epoch. C, D, Averaged participant force profiles (blue) and ideal force profiles (red) for both the Control (C) and Report (D) conditions during selected error-clamp trials
throughout the blocks of the task. The ideal force profile for a trial was computed by taking the participant’s reach velocity at each time point and calculating the ideal force needed to counter perfectly
the perturbation given that velocity. Shading represents SEM.
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Additionally, we also modeled the pure lateral force in the error
clamp trials and found no group differences in parameter values.

Experiment 2
To quantify both explicit and implicit learning (Taylor et al.,
2014), we conducted an experiment analogous to Experiment 1
using visuomotor rotations instead of force fields. Similar to Ex-
periment 1, the mean of participants’ median reaction times over
the experiment differed significantly between the Control (332 �
42 ms) and Report (590 � 55 ms) conditions (t(17) � 3.66, p 	
0.005), which can be attributed to the procedure of reporting the
intended aiming location.

We first performed a direct comparison of baseline heading
angle between the Report and Control conditions by comparing
participants’ mean heading angle over the last five trials of the
baseline epoch. The conditions were not significantly different
(t(17) � 1.05, p � 0.31).

Participants in both the Report and Control conditions
learned to counter the rotation in the R1 epoch and the opposing
rotation in the R2 epoch and showed a strong spontaneous re-
covery of the memory for the R1 epoch in the EC epoch (Fig. 4A).
This general learning time course was echoed in participants’
reach trajectories in the error-clamp trials dispersed throughout
the task, both during learning and during the EC epoch (Fig. 4B).
Participants’ hand trajectories in these interspersed error-clamp
trials were in the direction appropriate for countering the clock-
wise R1 rotation (Fig. 4B, blue), flipped to counter the counter-

clockwise R2 rotation (Fig. 4B, magenta), and, finally, in the EC
epoch, rebounded back to the direction first used to counter the
R1 rotation (Fig. 4B, red dashed line).

To evaluate learning, we performed a mixed factorial ANOVA
with two factors, condition and trial epoch, with trial epoch
treated as a repeated measure. The epochs analyzed consisted of
four five-trial bins: R1 early (the first five trials of R1), R1 late (the
last five trials of R1), R2 (the last five trials of R2), and EC (the first
five trials of the EC epoch). There was no significant main effect
of condition (F(1,17) � 0.17, p � 0.90), a significant effect of trial
epoch (F(3,36) � 254.93, p 	 0.001), and a marginally significant
interaction (F(1,9) � 2.83, p � 0.05). Post hoc tests suggest that this
interaction was largely driven by a marginally (uncorrected) sig-
nificant difference in R1 learning between the two groups (t(17) �
1.05, p � 0.08). Note that participants in both conditions showed
rapid learning of the second rotation and, at the start of the EC
epoch, showed comparable and immediate rebound back to the
heading angle that they used to counter the first rotation (Fig.
4A,B). Although there were qualitative group differences in early
R1 learning and reaction time, the overall effect of instruction
was relatively small, which was also observed in our previous
experiment (Taylor et al., 2014).

Participants in the Report condition aimed to locations other
than the target throughout the majority of the R1 and R2 epochs
(Fig. 4C, blue). During the R1 epoch, the aiming locations fol-
lowed a nonmonotonic time course, rising quickly during the
early stages of learning and falling slowly over continued training.
When the counter rotation was imposed in the R2 epoch, the
aiming direction abruptly changed sign and appeared to account
for nearly all of the learning associated with the counter rotation.
This aiming behavior was assessed by performing a repeated-
measures ANOVA on three epochs of aiming data—R1 early, R1
late, and R2 late. There was a main effect of epoch on aiming angle
(F(2,27) � 160.8, p 	 0.001) and post hoc t tests (Bonferroni-
corrected) revealed significant differences between R1 early and
R2 (p 	 0.001) and R1 late and R2 (p 	 0.001), but not R1 early
and R1 late (p � 0.19). Therefore, explicit learning was signifi-
cantly different between the R1 and R2 epochs, but the change
during the R1 epoch was not statistically reliable.

We quantified implicit learning in the Report condition by
subtracting the reported aiming angle from the movement head-
ing angle on each trial. As shown in Figure 4C, implicit learning
proceeds in an exponential-like fashion in the R1 epoch, sharply
descends in the R2 epoch, and rebounds in the EC epoch. We
assessed this pattern by performing a repeated-measures
ANOVA on four epochs of implicit learning: R1 early, R1 late, R2
late, and EC early. There was a significant main effect of trial
epoch on implicit learning (F(3,36) � 10.13, p 	 0.001) and post
hoc t tests revealed significant differences between R1 early and
R1 late (p 	 0.01), R1 late and R2 (p 	 0.001), and R2 and EC
(p 	 0.05), but not R1 early and EC (p � 0.13), or R1 late and EC
(p � 0.74). Overall, implicit learning increased during the first
rotation, significantly reversed direction during the second rota-
tion, and rebounded to a value equivalent to the late period of the
first rotation when the error clamp was introduced (Fig. 4C, red).

To determine how well the time courses of explicit and im-
plicit learning matched the time courses of the fast and slow
processes, we fit the two-state model (Smith et al., 2006) to each
participant in the Control and Report conditions. Crucially, we
compared the conditions by fitting the models to different
sources of participant data. For the Control condition, we fit the
total motor output of the model to participant’s actual motor
output (heading angle) and, for the Report condition, we fit the

Figure 3. Experiment 1 model fitting. The two-state model was fit to each participant in
both the Control (A) and Report (B) conditions. The output of the model (green line) was fit to
each participant’s adaptation index data (purple). Also depicted are the fast (solid black line)
and slow (dashed black line) processes implied by the fits. Shading represents SEM.
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individual fast and slow processes to, respectively, participant’s
explicit and implicit learning data. For participants in the Control
condition, the two-state model provides a good fit to the time
series of heading angles during all phases of the experiment (Fig.
5A). In particular, it predicts a nonmonotonic fast process, which
increases abruptly then drops gradually, and a monotonically
increasing slow process during the R1 epoch. It also predicts the
rapid flip in motor output during the R2 epoch and approximates
the rebound during the EC epoch.

For the Report group, the shape of the fast and slow processes
of the model produced good fits to the explicit and implicit data
(Fig. 5B). The fast process of the two-state model fits the time
course of explicit learning remarkably well throughout the R1
and R2 epoch before being clamped at zero in the EC epoch.
Although the slow process fits the time course of implicit learning
throughout the R1 epoch, it underestimates the decrease in im-
plicit learning observed during the R2 epoch and underestimates
the large rebound during the EC epoch.

To justify using different fitting procedures for the Control
versus Report condition, we compared both the rms and corre-
lation coefficients produced by fitting the Report condition using
either the heading angle data alone or both the explicit and im-
plicit learning data, as reported above. We found no significant
differences between the two fitting procedures in either the rms
(t(18) � 1.18, p � 0.26) or the correlation coefficients (t(18) �
0.74, p � 0.47).

We performed t tests on the fitted values of the four parame-
ters, AF, AS, BF, and BS. There were no statistically reliable group
differences in the four parameters, although there was a margin-
ally significant difference in the learning rates of the fast process
BF (t(17) � 1.81, p � 0.09). This result was expected, given that the
qualitative difference found in early R1 learning between the con-
ditions is better explained by the rate of the fast process, not the
slow process. This suggests that the subtle effect of aim reporting
(Taylor et al., 2014) relates to the explicit/fast process, not im-
plicit adaptation. Aside from noticeable differences in the fast
process, there is also a qualitative difference between the two fits
(Fig. 5A,B) in terms of the slow process. The fit in the Control
condition (Fig. 5A) implies a more robust slow process than the
fit in the Report condition (Fig. 5B). Although a diminished slow
process in the Report condition would be expected given a pos-
sible boost to the fast process brought about by the aiming task
(according to the model, the two processes interact), it should be
noted that the fast and slow processes in the Control condition
model fit (Fig. 5A) are only implied and thus offer an imperfect
comparison to the Report condition fits.

Although the two-state model does a suitable job of fitting the
explicit and implicit components of learning, the fit to the im-
plicit learning trace is imprecise during the R2 and EC epochs due
to discontinuities in the observed behavior—EC rebound is not
continuous with R2 implicit learning and is larger than the slow
process predicts. This led us to hypothesize that implicit learning
itself has distinct components.

It has been suggested that the amount of time elapsed be-
tween movements to specific locations modulates the amount
of sensorimotor adaptation that occurs in the motor system
(Brennan et al., 2012; Hadjiosif and Smith, 2013). Further-
more, this hypothesis suggests that implicit adaptation is itself
multifaceted, with a component that is temporally sensitive
and another that is temporally stable (Brennan et al., 2012;
Hadjiosif and Smith, 2013). The amount of adaptation ac-
counted for by the temporally sensitive component peaks at 0 s
of intertrial time and decays exponentially until �40 s (Had-
jiosif and Smith, 2013). If the discontinuities seen in the im-
plicit adaptation curve of our single-target condition could be
explained within this framework, then the flexible implicit
learning in the counter perturbation phase may represent the
contribution of a temporally sensitive component of adapta-
tion and the large rebound in the error-clamp phase may re-
flect an unmasking of a pure temporally stable component. In
Experiment 3, we tested this hypothesis systematically by ma-

Figure 4. Experiment 2 behavioral results. A, Averaged hand heading angles for both groups
binned by five trials. Participants in both the Report (purple) and Control (black) conditions
learn the first 45° clockwise rotation (R1), then the 45° counterclockwise rotation (R2), and
subsequently show rebound back to the first rotation during the error-clamp block (EC). B,
Reach trajectories during interspersed error clamps. Participants in both conditions show accu-
rate baseline performance (BL, black), robust early R1 learning (ER1, cyan), late R1 learning
(LR1, blue), R2 learning (R2, magenta), and early EC epoch rebound (EC, red dashed). C, Explicit
aiming and implicit learning in the Report condition. Participants showed both explicit (blue)
and implicit (red) learning components of measured heading angles (purple). Implicit learning
is estimated through a subtraction of aiming direction from heading angle. Participants are
instructed to aim directly to the target for the EC epoch. Note that heading angle (purple) and
implicit learning (red) are equivalent in the EC epoch. Shading represents SEM.
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nipulating the ITI directly in three separate single-target re-
porting conditions.

Experiment 3
We hypothesized that the time elapsed between reaches to unique
locations could affect the time course of implicit learning (Fig.
4C, red). To test this, we titrated the duration of a forced ITI over
three separate conditions: 0, 15, and 30 s ITI. Recent work has
suggested that, with an �35 s ITI, the temporally sensitive com-
ponent of adaptation is essentially abolished and only a tempo-
rally stable component remains (Hadjiosif and Smith, 2013).
Including reaction time and reporting time, the mean ITIs for
each condition were 5.83 � 0.32, 20.43 � 0.42, and 37.15 �
0.27 s, respectively.

We conducted three separate mixed factorial ANOVAs with
two factors, condition and trial epoch, on participants’ heading
angles, explicit learning, and implicit learning. The epochs ana-
lyzed consisted of four five-trial bins: R1 early (the first five trials
of R1), R1 late (the last five trials of R1), R2 (the last five trials of
R2), and EC (the first five trials of the EC epoch). Note that the
number of trials (145 trials) was �1/3 of the number used in
Experiments 1 and 2 (420 trials).

For heading angle, there was no significant main effect of
condition (F(1,28) � 2.88, p � 0.10), a significant effect of trial

epoch (F(3,84) � 16.36, p 	 0.001), and no significant interaction
(F(1,9) � 0.44, p � 0.72). For explicit learning, there was no sig-
nificant main effect of condition (F(1,28) � 1.08, p � 0.31), a
significant effect of trial epoch (F(2,56) � 109.3, p 	 0.001), and no
significant interaction (F(1,9) � 0.11, p � 0.90). Last, for implicit
learning, there was no significant main effect of condition (F(1,28) �
0.11, p � 0.74), a significant effect of trial epoch (F(3,84) � 16.36,
p 	 0.001), and no significant interaction (F(1,9) � 0.74, p �
0.53). As shown in Figure 6, explicit (Fig. 6B) and implicit (Fig.
6C) learning across the three conditions were strikingly similar.

Our results indicate that the amount of time elapsed between
consecutive movements to specific regions of space had no ap-
preciable effect on implicit learning. Therefore, we believe that
the stark discontinuities observed between the end of the R2
block and the EC rebound (Figs. 4C, 6C) reflect contributions
from a third process of motor learning that is implicit, but dis-
tinct from the monotonic, trial-by-trial learning predicted by the
slow process of the two-state model.

Experiment 4
Recent work in sensorimotor learning has revealed implicit
learning processes distinct from adaptation, such as reinforce-
ment learning (Huang et al., 2011; Galea et al., 2015; Nikooyan
and Ahmed, 2015), hand-path priming (Jax and Rosenbaum,
2007), and use-dependent plasticity (Diedrichson et al., 2010;
Verstynen and Sabes, 2011). All of these processes show that di-
rectional biases can form as a result of repeated movements to a
specific region of space.

Experiment 4 was designed to manipulate those biases by hav-
ing participants reach to multiple target locations distributed
over different regions of the task environment. Participants in the
Full condition reached to targets around the entirety of the work-
space, whereas those in the Partial condition were only presented
with targets in 1/4 of the workspace. We suggest that directional
biases caused by repeated movements to one target direction are
the source of the inflated rebound we observed in implicit learn-
ing in Experiments 2 and 3 (Figs. 4C, 6C). In the Full condition,
such biases could “cancel out” due to the even spread of reach
directions across the workspace, resulting in error-clamp re-
bound that is contiguous with the implicit learning trace during
R2. However, assuming that this putative additional implicit pro-
cess can narrowly generalize, directional biases could be recov-
ered if the same number of targets were restricted to a small
region of the workspace. This prediction was tested in the Partial
condition.

We conducted three separate mixed factorial ANOVAs with
two factors, condition and trial epoch, on participants’ heading
angles, explicit learning, and implicit learning. For heading angle,
there was a marginally significant main effect of condition (F(1,18) �
4.33, p � 0.05), a significant effect of trial epoch (F(3,38) � 43.94,
p 	 0.001), and no significant interaction (F(1,9) � 0.14, p �
0.94). For explicit learning, there was no main effect of condition
(F(1,28) � 0.01, p � 0.93), a significant effect of trial epoch (F(2,37)

� 53.96, p 	 0.001), and a significant interaction (F(1,9) � 4.72,
p 	 0.05). Last, for implicit learning, there was a significant main
effect of condition (F(1,18) � 13.08, p 	 0.01), a significant effect
of trial epoch (F(3,38) � 15.47, p 	 0.001), and a significant inter-
action (F(1,9) � 5.36, p 	 0.01).

Differences in the magnitude of implicit learning between the
conditions were predicted due to the role of generalization in
sensorimotor adaptation—adaptation in the Partial condition
should generalize more than the Full condition due to the close
proximity of the target locations, leading to greater implicit

Figure 5. Experiment 2 model fitting. The two-state model (see Materials and Methods) was
fit to both conditions. A, In the Control condition, the total model output (green line) was fit to
participant’s mean heading angle data (purple). Implied fast (solid black line) and slow pro-
cesses (dashed black line) of the model fit are also depicted. B, In the Report condition, the fast
and slow processes of the model were fit individually to each participant’s respective explicit
(blue) and implicit (red) learning data. Here, the model captures R1 behavior but fails to capture
all implicit learning in the R2 epoch and undershoots the rebound in the EC epoch. Shading
represents SEM.
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learning (Krakauer et al., 2000; Taylor and Ivry, 2013). Fur-
thermore, if trial-by-trial learning generalizes more in the Par-
tial condition, then the rate of adaptation should appear to be
faster as well.

These predictions were supported by the results. Our ANOVA
revealed a significant main effect of condition on implicit learn-
ing, which is reflected by heightened implicit learning in the Par-
tial condition relative to the Full condition (Fig. 7). Furthermore,
differences in the rate of implicit learning are supported by two
findings. In the Partial condition, implicit learning dropped pre-
cipitously in the R2 epoch compared with the end of the R1 epoch
(t(9) � 2.80, p 	 0.05), but remained stable in the Full condition
(t(9) � 1.36, p � 0.21), suggesting a faster learning rate in the
Partial condition. Second, fitting the two-state model to the data
in both conditions revealed that the slow process learning rates

(BS) tended to be higher in the Partial condition, although this
difference was only of marginal significance (t(18) � 1.85, p 	
0.10). There were no significant group differences in the fast pro-
cess learning rate (t(18) � 1.28, p � 0.22).

We compared the rms of each fit of the two-state model and
found that the quality of fit in the Full condition was significantly
better than the Partial condition (t(18) � 3.17, p 	 0.01). This can
be seen in Figure 7; the slow process fit in the Full condition
accurately captures all stages of implicit learning and does not
underestimate the magnitude of rebound, contrasting with both
the Partial condition and all model fits in Experiments 1 and 2.

To capture differences between the full operation of rebound
and implicit learning during the counter perturbation epoch, we
conducted a final analysis, a posteriori, comparing learning in the
last five trials of the EC epoch to the last five trials of the R2 epoch.
Rebound in the EC epoch was significantly higher than late R2
learning in the Partial condition (t(9) � 2.28, p 	 0.05) and,
conversely, was significantly lower than late R2 learning in the
Full condition (t(9) � 2.44, p 	 0.05). Intriguingly, there was
virtually no decay of the adaptation rebound seen in the EC epoch
across the majority of our data, contrasting with results reported
by Smith et al. (2006), in which a subtle early decay of rebound
was observed. We believe that our lack of observed rebound de-
cay may be due to the fact that we used a longer R1 training
session relative to Smith et al. (2006) and this extra training could
act to buoy adaptation rebound, perhaps due to the directional
biases mentioned above. In addition, nonzero rebound in Smith
et al. (2006) did persist throughout the entire EC epoch, similar to
our current findings.

The effect of an implicit directional bias on the magnitude of
rebound can be seen clearly when the implicit learning curves of
both the Partial condition and the Report condition are superim-
posed (Fig. 7C). Interestingly, whereas both groups show similar
implicit learning by the end of the R2 phase of learning, the
rebound in the EC phase for the Partial condition is much higher
than the Full condition (Fig. 7C). This discontinuity in the Partial
condition suggests that an additional implicit process is at play.
We suggest that having participants move in opposing radial di-
rections an equal number of times (Full condition) effectively
cancels out the implicit directional biases, which in turn unmasks
a pure monotonic implicit learning signal. It is this learning signal
that is best captured by the slow process of the two-state model
(Fig. 7A).

Discussion
This study aimed to provide a more mechanistic explanation of
the oft-cited fast and slow processes of human motor learning put
forth by Smith et al. (2006). To do this, we examined explicit and
implicit components of sensorimotor learning using a recently
developed method that measures verbally reported, goal-driven
learning in addition to the physical markers of implicit learning
(Taylor et al., 2014). We used this novel method across the two
common paradigms of human sensorimotor learning: force field
and visuomotor rotation tasks. We found striking similarities
between the purported fast process and explicit learning and also
between the slow process and implicit learning. In addition, we
confirmed the presence of multiple components within the slow/
implicit process itself. These results provide evidence for at least
three processes of sensorimotor learning that evolve over time in
unique ways—indeed, there are likely more such processes. For
example, there is evidence that adaptation also operates on a
timescale across days in addition to single sessions (Albert et al.,
2012). Ultimately, our findings argue for a wider consideration of

Figure 6. Experiment 3 behavior. A, Averaged hand heading angles, B, C, Explicit aiming
(blue; B) and implicit learning (red; C) for the three conditions of Experiment 3. All three ITI
conditions show remarkably similar learning. Shading represents SEM.
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the diversity of psychological and neural mechanisms that sub-
serve sensorimotor learning (Huberdeau et al., 2015).

Our behavioral results and model fits show that the fast and
slow processes introduced by Smith et al. (2006) are captured by
explicit and implicit components of learning, respectively. In Ex-
periment 1, participants’ explicit reports of aiming directions
closely reflect the time course of the fast process. Furthermore,
the fast process of the two-state model easily captures the explicit
aiming data of both Experiments 2 and 4 (Figs. 5, 7). These data
jointly suggest that the fast process and explicit learning may
reflect the same underlying mechanism.

Until now, the gradual decay of the fast process seen clearly
during the first perturbation epoch in Experiments 2– 4 (Figs. 4C,
6, 7) has been characterized as rapid “forgetting” (Trewartha et
al., 2014). Our results offer an alternative to this interpretation,
suggesting that the decay of the fast process is actually compen-
sation for simultaneous implicit learning. Participants are not
slowly forgetting an explicit solution to the task; rather, they are
attenuating their aim magnitude as an implicit process adapts to
the environmental perturbation.

There is evidence that the fast component of motor learning
relies on declarative memory resources (Keisler and Shadmehr,
2010) and requires high preparation times (Haith et al., 2015a).
Our results here confirm this notion. “Fast” learning is explicit.
Furthermore, recent evidence shows that explicit learning pro-
cesses are responsible for savings in sensorimotor learning (Haith
et al., 2015a).

The slow process resembles implicit learning, with an impor-
tant caveat: implicit learning itself is composed of at least two
components. Although the magnitude of adaptation has been
thought to be attenuated by long delays between successive
reaches in similar regions of space (Brennan et al., 2012; Hadjiosif
and Smith, 2013), our data do not support this interpretation
(Fig. 6). Instead, we suggest that the discontinuities in implicit
learning between the end of the counter perturbation epoch and
the error-clamp epoch, seen in all the conditions in which train-
ing was limited to a particular region of the workspace (Figs. 4C,
6, 7B), reflect a third implicit learning process distinct from what
we expect is conventional cerebellar-based adaptation (Izawa et
al., 2012).

In our one-target design, the exact solution for countering the
first rotation is the same on every trial of that epoch. Therefore, a
single reach direction is reinforced over many successive trials.
Previous research has revealed that repetition of an adapted
movement induces directional biases via a process of “use-
dependent plasticity” (Huang et al., 2011; Verstynen and Sabes,
2011). Furthermore, such biases are reinforced when the re-
peated movement yields reward (task success), which is consis-
tent with a fully adapted reach in the perturbation blocks of our
task (Huang et al., 2011). These previous findings support our
results—robust rebound in the EC epoch of the one-target con-
ditions appears to be larger than predicted by implicit adaptation
alone and is likely augmented by a directional bias induced by the
repeated adapted movements of the first perturbation block. The
counter-perturbation block is only 1/10 the length of the first
perturbation block, so the original bias persists at the onset of
error clamp.

Such biases should effectively be canceled out in the Full con-
dition of Experiment 4 because movement directions are spread
out equally in a circle. Indeed, this is what we found—EC re-
bound in the Full condition was relatively small and was contig-
uous with the implicit learning trace, suggesting that rebound in
that condition is composed of only monotonic implicit adapta-
tion (Fig. 7A). In contrast, in the Partial condition, in which the
reach locations were restricted to a small area of space, rebound
was enhanced (relative to adaptation alone), potentially due to a
use-dependent/operant directional bias (Huang et al., 2011; Ver-
stynen and Sabes, 2011) that also operates in Experiments 2 and 3.
We contend that tasks involving a single movement direction are
likely to elicit these biases and this fact should be taken into account
when observed motor behaviors are interpreted mechanistically;
methodologically speaking, the diversity of movement directions in
a motor learning task is a vital variable. Further research is needed to
explore these forms of learning, especially as they relate to reward,

Figure 7. Experiment 4 behavior and model fitting. A, In the Full condition, implicit learning
(red) was low relative to the Partial condition, but rebound was continuous with R2 learning.
The fast and slow processes of the model were fit individually to explicit (blue) and implicit (red)
learning data. B, In the Partial condition, implicit learning (red) echoed that of the various
single-target groups of Experiments 2 and 3, with a higher rebound than predicted by a single
monotonic implicit learning process. The fast and slow processes of the model were fit individ-
ually to explicit (blue) and implicit (red) learning data. C, Superimposed implicit learning curves
from the Partial (green) and Full (brown) conditions. Shading represents SEM.
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which was shown recently to have a complex relationship with im-
plicit sensorimotor learning (Galea et al., 2015).

Importantly, the relatively low level of implicit learning in the
eight-target Full condition versus the various one-target condi-
tions is not just a reflection of the different components of
implicit learning: adaptation in general shows narrow generaliza-
tion (Krakauer et al., 2000; Taylor and Ivry, 2013) and partici-
pants in the Full condition had a fewer number of reaches toward
each general reach direction, leading to less overall adaptation.
Indeed, there appear to be strong differences in generalization
between explicit and implicit components of learning (Heuer and
Hegele, 2011). We note that the overall level of implicit learning
in our Full condition was lower than that reported in a previous
experiment with a similar eight-target design (Taylor et al., 2014).
However, it matches the degree of implicit learning reported in
more recent work from our laboratory (Bond and Taylor, 2015).
This discrepancy across experiments may be due to differing
numbers of training trials, the use of different experimental set-
ups (e.g., viewing angle), and subtle differences in task proce-
dures such as clockwise versus counterclockwise rotations.
Future work should further elucidate what determines the mag-
nitude of implicit learning.

Direct comparisons between results in Experiment 1 versus
Experiments 2– 4 are difficult because we do not have a compa-
rable measurement of implicit learning in Experiment 1 and thus
have to rely on the implied fast and slow process from the model-
fitting analysis. Participants in the Report condition of Experi-
ment 1 did aim in a manner similar to those in the other
experiments, displaying both the characteristic rapid learning of
the first perturbation and the rapid change in sign at the onset of
the second (Fig. 2B). However, their aim reports did not show the
identical full time course of explicit learning, a rapid rise followed
by slow decay, as seen in Experiments 2– 4. An alternative method
of probing explicit and implicit learning in a dimension more
relevant to force field learning tasks has yet to be developed.
Nonetheless, the results reported here suggest that investigators
should consider the significant role of explicit processes in future
force field experiments. It is clear that explicit strategies are pres-
ent across methodologies in the field of motor learning.

Although significant effects of explicit reporting on overall
task performance were not found, learning was qualitatively
slightly better in the Report group of Experiment 2 (Fig. 4A).
Even though these effects are not statistically reliable, we suggest
that a modest improvement to learning is brought about by the
act of reporting, the presence of visual landmarks, or both. This
subtle improvement could be explained by attentional and mo-
tivational features of task goals; indeed, dual-task manipulations,
which divide attention between the motor task and a secondary
distracting task, attenuate the rate of overall learning (Taylor and
Thoroughman, 2007, 2008; Galea et al., 2011; Malone and Bas-
tian, 2010). Therefore, it is possible that the converse of this may
be true: drawing attention to the task via explicit reporting could
speed the rate of learning. In addition, higher RTs in the Report
groups give those participants more preparation time, during
which an explicit/declarative learning process may select a move-
ment plan (Haith et al., 2015a; Haith et al., 2015b; Huberdeau et
al., 2015).

The fast and slow process model (Smith et al., 2006) is cited
often in the motor learning literature and recent hypotheses con-
cerning the physiological mechanisms driving each process are
far-ranging, including muscle synergy patterns versus descend-
ing commands (Ting and McKay, 2007), M1 activity versus sub-
cortical activity (Galea et al., 2011; Choi et al., 2014), declarative

memory versus adaptation (Keisler and Shadmehr, 2010; Trew-
artha et al., 2014), and, in its original conception, two unique sites
of plasticity in the cerebellum (Medina et al., 2001; Smith et al.,
2006; Yang and Lisberger, 2014). Our results suggest that the fast
process, being explicit, likely relies on a wide network of atten-
tional, executive, and motor areas (Taylor and Ivry, 2014; Hu-
berdeau et al., 2015). Furthermore, the multifaceted implicit
process could be supported by both subcortical and neocortical
substrates, with unique regions contributing to error-driven ad-
aptation, use-dependent plasticity, and operant learning. Future
experiments are required to disentangle the variety of processes
that toil in parallel to produce the canonical learning curve.
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