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Dissociable cognitive strategies for sensorimotor
learning
Samuel D. McDougle 1 & Jordan A. Taylor2,3

Computations underlying cognitive strategies in human motor learning are poorly under-

stood. Here we investigate such strategies in a common sensorimotor transformation task.

We show that strategies assume two forms, likely reflecting distinct working memory

representations: discrete caching of stimulus-response contingencies, and time-consuming

parametric computations. Reaction times and errors suggest that both strategies are

employed during learning, and trade off based on task complexity. Experiments using pres-

sured preparation time further support dissociable strategies: In response caching, time

pressure elicits multi-modal distributions of movements; during parametric computations,

time pressure elicits a shifting distribution of movements between visual targets and distal

goals, consistent with analog re-computing of a movement plan. A generalization experiment

reveals that discrete and parametric strategies produce, respectively, more localized or more

global transfer effects. These results describe how qualitatively distinct cognitive repre-

sentations are leveraged for motor learning and produce downstream consequences for

behavioral flexibility.
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When first learning a new motor skill, selecting an
appropriate action can be a time-consuming, delib-
erative process. Consider someone first learning to

play the piano: ideally, she could quickly learn a
stimulus–response mapping relating notes on the staff to their
appropriate keys. However, learning this mapping is only tract-
able when a musical score has a few notes in a small range. As it
gets more complicated, things fall apart—if we just consider just
the number of keys in an octave, it easily exceeds our typical
working memory capacity1. A common strategy (used in piano
pedagogy) to overcome this limitation is to approach it para-
metrically: She can anchor her thumb on middle C and reference
other notes on the lines of the musical staff relative to this key.
While this strategy affords her the ability to play a more complex
melody within a few minutes of practice, it also becomes
increasingly cumbersome the further a given note is from middle
C—echoing the phenomena of mental scanning and mental
rotation2,3. These two strategies, one a discrete map (caching
stimulus–response pairs) and the other a parametric algorithm
(computing relative distances from C), offer two ways to
approach learning a novel motor skill.

In simpler motor tasks, like the visuomotor rotation task4,
subjects often leverage strategies to rapidly improve perfor-
mance5. Strategic processes appear to be related to higher reaction
times6, improved task performance7, and the direction of eye
gaze8,9. Increased reaction time, and the fact that strategies are
often verbalizable, suggests that they reflect deliberative, con-
trolled processing10. Control processes often rely on working
memory, making it one candidate system that may underlie
cognitive strategies for motor learning. Evidence suggests that
spatial working memory ability correlates with performance in
visuomotor tasks11, and both recruit similar neural circuits12.
Moreover, spatial working memory ability correlates with the use
of explicit strategies in visuomotor rotation learning13. However,
it remains unclear what kinds of working memory representa-
tions are used for strategies in motor learning.

Here we set out to directly characterize cognitive strategies in a
visuomotor rotation task, which requires subjects to adapt to
sensory feedback that is rotated relative to their movements. We
hypothesized that strategies would take two broad forms, either
discrete response caching (RC) or parametric mental rotation
(MR). RC is here defined as the maintenance of acquired one-to-
one associations between a set of stimuli and a set of responses
maintained in memory14,15, perhaps relying on processing in
prefrontal cortex16,17. As a form of item-based working memory,
the efficacy of RC should be subject to load (e.g., the number of
items to be stored14,18).

A parametric MR strategy is the canonical example of an
analog computation3,19, in which an internal mental representa-
tion is manipulated in visual working memory like a physical
object20. Evidence from behavior and neurophysiology provides
support for mental rotation in the planning of reaching move-
ments: reaction time (RT) during the mental rotation of reaches
scales with the magnitude of required rotation, sharing remark-
able similarities to visual mental rotation21–23. Moreover, deco-
ded neuronal population vectors in motor cortex appear to rotate
through directional space during mental rotation of a reach
plan24 (but see ref. 25).

Critically, mental rotation can compute rotations with arbitrary
signs or magnitudes, and through multiple planes3, thus con-
stituting a flexible algorithm that is formally equivalent to the
application of a rotation matrix to some mental representation.
Similar algorithms likely exist for other sensorimotor transfor-
mations: for instance, linear RT effects are observed when
humans compute varying gains on reaching extent;23 here, the
heuristic would represent a scalar transformation rather than a

rotation, though the same logic applies. The idea of mental
rotation specifically describing explicit learning in visuomotor
rotation tasks has been suggested before7, and here we provide
the first direct test of this idea.

A key question concerns how cognitive strategies change over
the course of learning. Recent work on visual mental rotation
supports the idea of parametric vs. discrete strategies in that
domain—if subjects are exposed to many unique objects in a
visual mental rotation task, RT signatures of mental rotation
persist over days; however, if they are only exposed to a few
images during extended training, mental rotation effects diminish
with time, suggesting a shift to item-based retrieval15. Similarly,
recent work on visuomotor rotation learning suggests that time-
consuming strategic learning processes appear to become more
automatic with practice26. Together, these findings are broadly
consistent with Logan’s theory of skill automatization27, where
learning proceeds from an algorithmic stage to an associative
stage, the latter requiring repeated practice of specific instances.
Our experiments here are poised to confirm this transition as a
model of the cognitive stages of visuomotor learning, directly
characterize the computations underlying these different stages,
and test their downstream consequences. In Experiment 1, we
present evidence in support of distinct working memory repre-
sentations for motor learning, and provide support for a transi-
tion from algorithmic to item-based-retrieval strategies in motor
learning. In Experiments 2 and 3, we expose within-trial sig-
natures underlying these distinct strategies. In Experiment 4 we
characterize downstream consequences of different learning
representations on behavioral flexibility and generalization.

Results
Experiment 1: dissociable strategies in motor adaptation.
Subjects performed a visuomotor rotation task (see Methods),
where visual feedback was rotated relative to their reaching
direction (Fig. 1a). Our hypothesis was that in low set size con-
ditions (a small number of learning targets), subjects would pri-
marily use a discrete RC strategy (i.e., a look-up table), while in
high set size conditions they would use a parametric MR strategy
(i.e., a rule-based algorithm). We used a 2 × 2 between-subjects
factorial design, crossing Set Size and Rotation Magnitude. For
Set Size, subjects were exposed to 2 or 12 possible target locations.
In the 2T condition, one of two targets, separated by 180°, was
pseudorandomly presented at each trial. In the 12T condition,
target locations were pseudorandomly presented at 1 of 12 pos-
sible locations. For Rotation Magnitude, subjects experienced
either a 25˚ or 75˚ rotation during the rotation block to test for
signatures of MR. Feedback, in the form of a small visual cursor,
was only provided at the end of the reach and was delayed by 2 s,
a manipulation which limits implicit motor adaptation28–31 to
better isolate strategic learning.

Our first analysis focused on RT. We hypothesized that in the
high Set Size group (12T), RT would be modulated by Rotation
Magnitude throughout learning, consistent with the idea that
subjects were parametrically mentally rotating their motor plans
on each trial. In the low Set Size group (2T), we expected this
effect only early in learning, while subjects discovered the
“structure” of the task, and subsequently we expected RTs to
converge in the two 2T groups due to the caching of responses.
Our 2 × 2 design could test these specific predictions: MR in all
four groups early in learning, and a shift to RC, for the 2T groups,
late in learning.

Consistent with these predictions, Rotation Magnitude affected
RT in all groups early in learning, but only the 12T groups late in
learning (Fig. 2a). To quantify this, we examined the means of
median RTs over 6 cycles between early learning (first 6 cycles)
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and late learning (last 6 cycles). We defined a cycle as 2 trials in
the 2T group and 12 trials in the 12T group to control for
inherent difference between Set Size conditions in the number of
exposures at each target location. RTs (Fig. 2c) were submitted to
a three-way mixed factorial analysis of variance (ANOVA) with a
within-subjects factor of Time (early vs. late learning), and
between-subject factors of Set Size and Rotation Magnitude. We
note that the lack of Set Size effects early in learning are an
example of how an algorithmic strategy can seemingly bypass
Hick’s Law (i.e., a log-linear increase in RT over set sizes32).

We found a significant main effect of Time (F(76)= 67.97, p
< 0.001), reflecting decreased RT in all groups over training. We
observed a significant effect of Rotation Magnitude, suggesting
that subjects employed MR—larger rotations resulted in longer
RTs (F(76)= 8.32, p= 0.005). We did not find a main effect of
Set Size (F(76)= 0.90, p= 0.34), but, critically, found a
significant two-way Time × Set Size interaction (F(76)= 20.87,
p < 0.001) and a three-way Time × Set Size × Rotation interac-
tion (F(76)= 4.56, p= 0.036). Post hoc t-tests (Bonferroni-
corrected) revealed an effect of Rotation Magnitude on late RT
in the 12T groups (t(38)= 2.45; p= 0.019), but not in the 2T
groups (t(38)= 0.15; p= 0.88). These results are consistent
with the hypothesis that all groups may have used MR to find
the task solution early in learning, and then either maintained
that strategy for the remainder of the task (12T), or transitioned
to RC (2T).

RTs in the baseline period revealed no significant difference
with respect to Set Size or Rotation Magnitude (ANOVA, p=
0.63 and p= 0.97, respectively). Likewise, in the washout block
we found no effect of Rotation Magnitude on RT (F(76)= 2.40; p
= 0.13) and only a marginal effect of Set Size (F(76)= 3.35; p=
0.07). Given this trend in the washout block (Fig. 2c), one
speculation is that differences in RT at the end of training carried
over, perhaps due to habitual rather than task-related factors33.

Differences in RT could not be attributed to task performance
between conditions: all groups displayed similar asymptotic
performance, with only subtle differences in the rate of learning
(Fig. 2b). We computed the average movement angular error (i.e.,
rotation minus movement angle) over the first 6 cycles and last 6
cycles and submitted these values to a two-way repeated measures
ANOVA. We found a significant main effect of Time on error (F
(76)= 74.70, p < 0.001), reflecting learning, but no significant
effects of Rotation (F(76)= 0.23, p= 0.64) or Set Size (F(76)=
1.25, p= 0.27), nor an interaction (F(76)= 1.34, p= 0.25). We
found no interaction between Rotation × Time (F(76)= 1.18, p=
0.28). We observed a significant Time × Set Size interaction (F
(76)= 6.28, p < 0.014), reflecting slight learning advantages in the
2T groups. There were no significant differences in movement
error during baseline with respect to Set Size or Rotation
Magnitude (ANOVA, p= 0.96 and p= 0.66, respectively). Thus,
neither Rotation Magnitude nor Set Size significantly affected task
performance, consistent with previous results34,35.

Delayed feedback was effective for limiting implicit adaptation,
as mean aftereffects across the sample were only 2.71˚ (Fig. 2b).
This suggests that the vast majority of learning was driven by
cognitive strategies rather than implicit learning5. Although
aftereffects were subtle, there were significant differences in
movement angle in the washout block with respect to Set Size and
Rotation Magnitude (F(76)= 16.10, p= 0.002 and F(76)= 9.95,
p < 0.001, respectively), though there was no significant interac-
tion (F(76)= 1.67; p= 0.20). Corrected t-tests revealed that only
the 2T 25˚ group showed statistically reliable aftereffects (t(19)=
3.49; p < 0.001; all other p’s > 0.09). Parsimony suggests that this
effect was not due to implicit adaptation, as in that case
significant aftereffects should also be present in the other
conditions34. The result is more consistent with “use-dependent”
learning, which describes a bias toward repeated movement
directions: use-dependent learning would be more robust in 2T
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target. A between-subjects, 2 × 2 design was used, crossing the factors Rotation Magnitude (the size of the rotation in the rotation block; left) and Set Size
(the number of possible target locations in the task; right). b Experiments 2–3: FREE task: subjects performed trial pairs consisting of learning trials (left)
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The time of target appearance was titrated to induce subjects to react with a distribution of RTs
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because only two responses are repeated, creating a stronger
bias36.

Distributions of reach errors reveal strategy differences. A
secondary analysis (Fig. 3) also comports with dissociable discrete
and parametric strategies. We analyzed subjects’ sign errors (i.e.,
reaches in the wrong clockwise/counterclockwise direction rela-
tive to the correct response). Normatively, RC and MR strategies
make distinct predictions about sign errors. In RC, sign errors
should represent trials where participants accidentally retrieve the
wrong response from memory (i.e., a working memory “swap”
error37). This would constitute a −155˚ error in the 25˚ condi-
tion, and a −105˚ error in the 75˚ condition. In parametric MR,
sign errors would most likely represent trials where participants
accidentally flip the rotation angle, aiming with the correct
magnitude relative to the target but the incorrect direction13. This
would constitute a −25˚ error in the 25˚ condition, and a −75˚
error in the 75˚ condition.

Sign errors were designated as trials where subjects reached
≤−15˚ from the target location (i.e., opposite the correct positive
response). Sign errors were relatively rare, and hence data were
pooled. As predicted, swap errors were the more common error
in the 2T groups, and flip errors were the more common error in
the 12T groups (Fig. 3).

Experiment 2: constraining RT reveals parametric strategies. In
Experiments 2 and 3, we wanted to confirm that the dissociable
strategies characterized in Experiment 1 were valid models of
within-trial cognitive computations. We adopted a “forced reac-
tion time” task38 which constrains the amount of time subjects
have to prepare their responses. This procedure has recently been
used to show how different processes proceed during motor
learning6,26. Here, however, we wanted to rapidly induce move-
ments to decode cognitive processes within a trial. Our hypoth-
eses were as follows: interrupting MR should induce intermediate

movements representing partially rotated movement plans
(Experiment 2), and interrupting RC should induce bimodal
movement distributions with modes at each cached movement
direction (Experiment 3).

We used a within-subject design with two tasks (FREE and
FORCED tasks; Fig. 1b). In the FREE task, which was designed to
capture the RT signatures of MR, subjects performed a series of
trial pairs (Fig. 1b, top): in the first trial of each pair, the
“learning” trial, subjects were instructed to reach directly at the
displayed target and observe where the cursor landed. In the
second trial, the “execution” trial, subjects were told to apply what
they learned about the relationship between their movement and
the resulting feedback and attempt to make the cursor terminate
within the target (see Methods). Rotations ranged from −90˚ to
90˚ by 15˚ intervals and were pseudorandomly presented.

Subjects were generally accurate on execution trials, with reach
angles tracking the magnitude of the rotation imposed on the
corresponding learning trial (Fig. 4a; t-test on regression slopes: t
(31)= 30.57, p < 0.001). As predicted, RT on execution trials
linearly increased with the angle of movement relative to the
target (Fig. 4b; t-test on regression slopes: t(31)= 6.59, p < 0.001),
consistent with MR.

The FORCED task was designed to interrupt putative mental
rotation (Fig. 1b, bottom), with the prediction that movement
angle would be a linear function of RT. On each trial a
countdown of four tones was played, and subjects were instructed
to synchronize the initiation of their reach with the fourth tone
(see Methods). Targets could appear in 1 of 12 locations. The
moment of target appearance was titrated such that subjects had
varying amounts of time with which to compute the target
location, plan, and execute their movements. For rotation trials, a
fixed rotation of 90˚ was imposed on the cursor, and subjects
were thoroughly educated about the rotation beforehand.

We analyzed trials where subjects reached on time in
accordance with the fourth tone (µ= 78.90% of trials). RTs were
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binned by 25 ms, from 0ms through 400 ms, with the final bin
including all RTs above 400 ms. We first identified the RT at
which movement angles were reliably sensitive to the target
location (at very short RTs, movements should be directed
randomly since there is insufficient time to process the target39).
Circular variance first significantly decreased (t(31)= 2.28, p=
0.02; Supplementary Fig. 1) from the 7th to the 8th RT bin
(150–175 ms), suggesting that at RTs over 150 ms, subjects began
to make non-random movements. This result is consistent with
previous work39.

After this time point, reaching angles monotonically increased
with RT towards the solution (Fig. 4c; t(31)= 14.17, p < 0.001).
This result echoes the rotation of a population vector in the motor
cortex24. Moreover, the observed linear trend through intermedi-
ate movement directions (Fig. 4c, d) likely represents a behavioral
correlate of intermediate states of mental rotation, confirming a
fundamental assumption of analog computations3,19.

Mental rotation paces are correlated between tasks. We assume
that the FREE and FORCED tasks recruit the same parametric
strategy. We derived a mental rotation pace parameter from each
task (FREE and FORCED; see Methods). MR paces were strik-
ingly similar between tasks (t(31)= 0.19, p= 0.85; Bayes factor=
7.81 in favor of the null). A significant correlation was found in
subjects’ mental rotation paces across tasks (RPearson= 0.46; p=
0.008; RSpearman= 0.41; p= 0.02; Supplementary Fig. 2). This
result suggests that the same computation is operative in our
constrained and unconstrained RT contexts.

We note that FREE RTs (Fig. 4b) were well above those that
produced equivalent movement directions in the FORCED task
(Fig. 4c). We also note that the range of RTs observed in the
FREE task is comparable to a similar study21, and in the FREE
task we found no correlation between the intercept of the
regression, which reflects putative non-rotation RT, and its slope,
which reflects MR (RPearson= 0.03; p= 0.87; RSpearman= 0.09; p
= 0.64). Thus, excess RT in the FREE task is likely the product of

processing unrelated to MR. Extra computation time could be the
result of relatively low urgency in the FREE task.

Control analyses confirm a parametric strategy. We now
address three alternative explanations for the observed rise in
mean reach directions over RT in the FORCED task (Fig. 4c).
First, because subjects made many random (i.e., uniformly dis-
tributed) movements at low RTs, and gradually made correct
movements at higher RTs, a linear trend could appear as an
averaging artifact. Critically, subjects’most frequent (mode) reach
directions displayed intermediate values, gradually increasing
with RT (Supplementary Fig. 3) and showing a significant linear
trend (t-test on regression slope, p= 0.002), arguing against this
particular averaging confound.

Second, non-random reaches could be limited to 0˚ (i.e., a
prepotent response40) and 90˚, with the linear trend representing
changes in relative frequency of each as RT increases. However,
the mode analysis argues against this explanation; moreover, the
full distribution of reach directions (Fig. 5a) shows no clear mode
at 0˚. Subtle bimodality was indeed observed—subjects occasion-
ally reached with an approximately correct magnitude of rotation
but with an incorrect sign, echoing Experiment 1 (Fig. 3).

To further examine the distributions of reach angles over RT
bins, we fit the data with two mixture models that accounted for
random reaches (i.e., uniform distribution) and directed reaches
(i.e., Von Mises distributions; see Methods). The first model
(Free-µ) allowed two mean parameters, one positive and one
negative, to vary over RT bins (capturing correct responses and
sign flips). The second model (Fixed-µ) had fixed mean
parameters at +90˚ and −90˚, consistent with a priori predictions
of a discrete RC strategy (with swap errors).

The mean parameters of the Free-µ model showed evidence of
MR (Fig. 5b): both the positive (purple) and negative (green)
mean parameters gradually approached, respectively, +90˚ and
−90˚ as RT increased. A regression on the fit mean parameters
revealed a significant positive linear trend for the positive µ
parameter (p < 0.001). Regression on the negative µ parameter
revealed no significant trend (p= 0.38), though this result may be
driven by the two deviant points (both >1.5 s.d. from the mean)
in the first two bins. Figure 5c shows the full probability density
functions of the Free-µ model. Critically, the Free-µ model
provided a far superior fit vs. the Fixed-µ model (ΔAIC= 1189,
Supplementary Fig. 4), as the Free-µ model can better capture
intermediate movements.

A third interpretation is that mental rotation could appear as
the result of response substitution, where a response directed at
the target location is gradually inhibited, while the rotated
response gets excited25. Here, intermediate movements are
explained by the averaging of simultaneously active motor
plans41. Importantly, response substitution and MR make distinct
predictions concerning movement speed: response substitution
predicts a slowdown on trials where responses are averaged42,
whereas MR does not. Indeed, we found that movement time
monotonically decreased (µ MT= 128.13 ms; Supplementary
Fig. 5) while movement speed monotonically increased (Supple-
mentary Fig. 6; t(31)= 4.28, p < 0.001) with increasing RT in the
FORCED task, a result consistent with an MR strategy.

The different speed predictions of response substitution vs. MR
can be captured in the length of a neural population vector, which
is correlated with movement speed43. We conducted a computa-
tional modeling analysis using two neural population coding
models. These models confirmed the different movement speed
predictions, and provide further evidence that the speed data are
compatible with MR but not response substitution (Supplemen-
tary Fig. 6). Furthermore, we note here that recent research has
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questioned the premise of involuntary averaging of parallel motor
plans (see Discussion44).

Experiment 3: constraining RT reveals a discrete strategy.
Experiment 3 was designed to provide further evidence of a
discrete RC strategy. We used the identical forced-RT task as
Experiment 2, but with 2 target locations instead of 12. We
hypothesized that in this context, movements would follow a
bimodal distribution reflecting cached responses.

Subjects could fully counteract the rotation with very short
RTs: circular means of the movement angles (Fig. 6a) reveal an
abrupt jump from highly variable movements at short RTs (<225
ms) to consistent movements at the rotation solution (90°). The
vector plot (Fig. 6b) does not show the several highly variable
intermediate values seen in the circular means, suggesting that
those are likely the result of circular averaging of extreme values
(e.g., −90˚ and +90˚; see model fitting below). The distribution
of reaching directions (Fig. 7a) is consistent with a bimodal
response distribution: subjects’ responses were concentrated near
the solution (+90˚) and its opposite (−90˚).

Unlike Experiment 2, we did not find a linear trend of
movement angles across RT bins (t-test on regression slope, p=
0.20; Supplementary Fig. 3). We also fit the Free-µ and Fixed-µ
mixture models to these data. Critically, the Von Mises mean
parameters for the Free-µ model appeared to saturate immedi-
ately, suggesting no mental rotation (Fig. 7b, c). In fact, linear
regression on the positive mean parameter revealed a slight
negative slope (p= 0.004), which is the wrong direction for
mental rotation, and regression on the negative mean parameter
revealed no trend (p= 0.36). In contrast to Experiment 2, the

Fixed-µ model provided a far superior fit to the data (ΔAIC=
1941, Supplementary Fig. 4). This comports with RC since there
is no need for free mean parameters, and thus the model is not
penalized for unnecessary complexity.

We also directly compared the 12-target and 2-target forced-
RT conditions. First, we performed serial comparisons between
circular mean reaching directions at each RT bin after the 150 ms
bin. Means were significantly different in the 10th–13th RT bins
(independent t-tests, all p’s < 0.05), spanning 200 and 300 ms. In
the 12-target condition, all bins after and including the 7th bin
were significantly different from 90˚ (one-sample t-tests, all p’s <
0.01). In the 2-target condition, movement angles were not
significantly different from 90˚ starting at the 8th bin onward
(one-sample t-tests, all p’s > 0.05).

Mental rotation pace in FREE task predicts learning RTs. By
intermixing different rotation sizes, the FREE task in Experiment
2 provided an estimate of subjects’ mental rotation paces
(Fig. 4b). If our hypothesis is correct, the average mental rotation
pace from the FREE task should correspond to observed RT
differences between the 75˚ and 25˚ conditions from Experiment
1, and this correspondence should hold for 12T conditions in
early and late learning, but only early in 2T conditions. The
regression line predicted by the FREE task was consistent with
MR occurring in all subjects early in learning (Fig. 8a; slope
difference between FREE task distribution of slopes and early
learning regression slope for 12T groups: t(31)= 1.37, p= 0.18;
2T groups: t(31)= 1.55, p= 0.13), but only the 12T groups late in
learning (Fig. 8b; FREE task slope difference from 12T groups: t
(31)= 0.78, p= 0.44; 2T groups: t(31)= 6.16, p < 0.001). This
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result is consistent with a set size-dependent shift from a para-
metric algorithm to a discrete retrieval strategy (Fig. 8c15,27).

Experiment 4: generalization is affected by type of strategy.
How do different working memory representations for visuo-
motor learning affect generalization when conditions change? In
Experiment 4, we investigated how different strategies would
affect learning transfer. We reasoned that subjects using RC
would show diminished generalization relative to subjects using
MR. This could occur because under an RC regime, specific local
instances are learned, whereas under an MR regime, a global rule
(or structure) is learned and can be applied indiscriminately.

Subjects were trained on a 45˚ rotation in a constrained region
of the workspace, with either 2 targets (2T) or 8 targets (8T), and
the width between the furthest targets matched between
conditions (Fig. 9; see Methods). After a brief rotation training
block, subjects experienced a generalization test that tested
transfer to novel targets. While this experiment could not directly
infer subjects’ learning strategies as in Experiments 1–3, we
reasoned that the set size manipulation would bias subjects
toward either RC (2T) or MR (8T).

As predicted, subjects in the 2T group showed more narrow
generalization vs. the 8T group (Fig. 10a, b). We performed a
trial-by-trial regression analysis on subjects’ movement angles
toward the generalization targets (Fig. 10c; Supplementary Fig. 7;
see Methods). We found that the amount of practice (i.e., a trial
number regressor) predicted an increase in movement angles
(toward the correct response) at the generalization targets for
both the 2T (t(14)= 2.73, p= 0.02) and 8T groups (t(16)= 2.35,
p= 0.03), suggesting that generalization increased with time.

Consistent with our main hypothesis, the distance of general-
ization targets from the nearest training target negatively
impacted movement angles in the 2T group (t(14)= 3.06, p=
0.009) but not in the 8T group (t(16)= 0.10, p= 0.92), and
regression coefficients between groups were significantly different
(t(30)= 2.41, p= 0.02). Thus, the cognitive strategy recruited for
visuomotor learning shapes how the newly learned behavioral
policy is generalized.

Discussion
The role of working memory in motor learning is not well
understood, though it is clear that controlled, deliberative pro-
cesses are important5,7,45. Here we characterize two cognitive
strategies in a visuomotor rotation task—discrete RC and para-
metric MR. MR manifests as a linear relationship between rota-
tion magnitude and RT, consistent with classic mental rotation3.
In contrast, RC manifests as a look-up table of S-R (stimulus-
response) relationships14,16, consistent with capacity-limited
working memory18,46.

How do parametric vs. discrete working memory representa-
tions relate to long-term skill acquisition? One useful analogy
here could be the dissociation of model-based and model-free
reinforcement learning47, where the former relies on an explicit
model of transition probabilities between responses and sensory
states, and the latter merely reinforces rewarded actions. One
speculation could be that model-based computations, which
could be analogous to parametric motor learning strategies, are
themselves made automatic over time48. This would suggest that
the transition from parametric to discrete strategies we observed
(Fig. 8) could represent mental rotation itself becoming
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automatic. However, if a complex computation like mental
rotation becomes automatic, it is hard to discern if the compu-
tation can still be said to be operative—it could be that the
responses reflecting the computation have been cached, and the
computation is thus no longer needed27,49. This kind of caching
could represent an intermediate form of processing that lies
somewhere between model-based planning and model-free rein-
forcement learning. In this framework, difficult computations
need not be discarded during skill learning, but rather come to be
bypassed during response preparation. Studies using extended
training could further test this hypothesis26.

Several studies on long-term visual mental rotation (using the
task originally described in ref. 3) find that although practicing
mental rotation for weeks leads to an exponential reduction in
overall RT, the mental rotation effect (i.e., RT as a linear function
of rotation magnitude) diminishes only subtly50–52. Provost
et al.15 showed that repeatedly performing mental rotation on a
small number of objects leads to the disappearance of mental
rotation effects (perhaps consistent with RC), but when a large
number of items are used during training, RT effects persist.
These results in the visual domain overlap with our results,
suggesting homologous mechanisms of spatial cognition. More-
over, these effects offer strong empirical support for Logan’s
theory of automaticity27, whereby skill learning involves a tran-
sition from algorithmic to retrieval-based strategies.

We also note that the results of our 12-target forced-RT task
(Fig. 4c, d) provide novel support to a critical prediction of analog
cognitive computations, namely that mental rotation proceeds
through intermediate states3. Intermediate states have been
implied from RT measures19 or neural recordings24, but have not
been rendered in overt behavior. Our results suggest that a mental
rotation-like operation can drive volitional re-planning of a
movement goal via a continuous sweep through direction space at
a constrained pace. We note that this mechanism does not require
that neurons necessarily be directionally tuned, but could instead
represent a low-dimensional projection of a high-dimensional
representation onto the two-dimensional angular space pre-
scribed by our task53.

Results in motor cortex24 were challenged by an alternative
explanation, which posits that the gradual “averaging” of an
initial motor plan at 0˚ with a second plan at 90˚ could give the
appearance of mental rotation25. This response substitution
account has been supported by behavioral findings where subjects
appear to average co-active motor plans in “go-before-you-know”
paradigms54 or “target-jump” saccade tasks42, where goals are
cued late in a trial. This averaging hypothesis has been challenged

by recent findings suggesting that nominally averaged plans may
be the product of a decision-making process optimizing a single
movement plan to account for multiple goals44,55. In a recent
study44, Wong and Haith44 used a go-before-you-know task
where subjects had to initiate a movement between two targets
before one was cued as the goal. Critically, when moving rela-
tively slowly (average movement times ~600 ms), subjects often
reached at an angle between two competing targets until the goal
target was cued, after which they swerved to the correct choice.
However, when moving quickly (average movement times ~300
ms), subjects often moved in a straight line to one of the two
options, making no corrections after the cue. Critically, not only
did our FORCED task have a single goal (a 90˚ reach) instead of
multiple goals, but, more importantly, subjects elicited rapid
reaching movements (average movement times ~130 ms) well
below the threshold for putative plan optimization44. Taken
together, our task design and results suggest that neither obliga-
tory averaging of co-active motor plans54 nor strategic plan
averaging55 describe our results, and we maintain that transfor-
mation of a motor plan is the most parsimonious explanation.

One trend in our data is the tendency for subjects to “under-
rotate” when they were putatively using a parametric MR strat-
egy. This can be observed in Experiment 1 (12T groups; Fig. 2b),
both the FREE and FORCED tasks of Experiment 2 (Fig. 4), and
the 8T group’s training target behavior in Experiment 4
(Fig. 10a). In contrast, when performing discrete RC, subjects
appear to reach all the way to the solution (2T groups Figs. 2b and
6). We do not have a clear result that speaks to this issue. One
speculation is that due to the extra computation time needed for
mental rotation, a latent urgency signal may drive subjects to
initiate their movement before they finished rotating, perhaps
reflecting a speed–accuracy trade-off. Another detail in our data is
that MR in the 12-target FORCED task (Experiment 2) appears to
start with a rapid jump followed by a slower rotation (Fig. 5b).
This suggests that the MR process may involve a sequence of
rotations with varying magnitudes.

In terms of the neural correlates of MR and RC, we present
several hypotheses. For MR, parietal areas—the putative locus of
mental rotation and similar sensorimotor transformations56–59—
could feed a shifting movement goal to motor cortex, which
would explain the observed intermediate movements when RT
was cut short. Consistent with this hypothesis, Anguera et al.12

found overlapping activation in inferior parietal and dorso-lateral
prefrontal cortices during both visuomotor learning and mental
rotation. Discrete RC, on the other hand, being a form of
capacity-limited item-based working memory, could rely on
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maintaining S-R relationships in dorso-lateral prefrontal cortex17.
Future studies could test these hypotheses using brain imaging or
stimulation.

A dissociation between parametric and discrete memory
representations is a theme in other learning and memory
domains. One example is human mathematical reasoning, where
there are behavioral and neural dissociations between numerical
computations learned by rote (“two times two is four”) vs. flexible
parametric operations performed on a mental number line
represented in fronto-parietal spatial working memory
regions60,61. Here we present an analogous dissociation, showing
evidence for both the maintenance of discrete motor responses
and the parametric manipulation of such responses. Action plans
related to these strategies may be held and manipulated in
working memory, perhaps in a manner consistent with visual,
auditory, and tactile representations. Furthermore, the particular
cognitive strategy that a subject adopts during learning appears to
have downstream consequences for speed–accuracy trade-offs
and behavioral flexibility.

Methods
Participants. A total of 158 right-handed subjects (age range 18–34, 73 women)
were recruited from the research participation pool maintained by Princeton
University in exchange for course credit or monetary compensation. Handedness
was verified using the Edinburgh handedness inventory62. All subjects participated
in accordance with the university’s institutional review board and provided written,
informed consent. In Experiment 1 (n= 80), 20 subjects were used per condition.
A single subject was excluded for disregarding the key task instruction of
attempting to land the cursor on the target (asymptotic movement error >6 s.d.
from the mean). We note that the sample size was not determined by a power
analysis, although it is consistent with sample sizes in other studies using similar
tasks35,44,54. In Experiment 2, a power analysis was used (alpha= 0.95) and
revealed that a sample of 19 subjects would replicate the effect size of a relevant

correlation result (d= 0.66; correlation of mental rotation paces in ref. 22). To be
conservative, we sought to approximately double it, and hence we recruited a
sample size of 32 (given counterbalancing). This is also in the range of a previous
study that used a similar within-subject design and a somewhat similar task22,
which had a sample size of 26. A power analysis was used to determine the sample
size in Experiment 3, which aimed to test the regression effect seen in Experiment 2
(d= 2.60; regression on movement angle × RT). The necessary sample size was 5,
but, again to be conservative and counterbalance rotation signs, we recruited a
sample of 10. For Experiment 4, we did not have a salient comparable analysis with
which to conduct an a priori power analysis (i.e., regression weights on general-
ization probe distance vs. movement); however, in a previous study where we
modeled generalization35, we used a sample of 15 subjects. Thus, we opted to use
36 subjects in total (18 per group), a number which allowed for symmetric
counterbalancing according to the task design.

General experimental procedures and analysis. In all experiments, subjects
made rapid, center-out, open-loop reaching movements to visual targets (5.0 mm
radius) using a digitizing tablet, holding on to a digital pen with their hand in a
power grip position and sliding the pen across the tablet (Intuous Pro; Wacom).
The task was controlled by custom software written in MATLAB (Mathworks,
Natick, MA; Psychophysics Toolbox). Hand position was sampled at 140 Hz. Sti-
muli were shown on a 21.5-inch LCD computer monitor (Planar), mounted hor-
izontally 25 cm above the tablet, occluding vision of the hand. A small cursor (2.5
mm radius) provided endpoint feedback after each reach terminated. Analyses
were conducted in MATLAB and R (GNU).

Experiment 1. Subjects (N= 80) made rapid, 7 cm movements to targets in a
blocked reaching task using a 2 × 2 between-subjects design, crossing the factors
rotation magnitude and number of targets (“set size”; Fig. 1a). For the rotation, two
magnitudes were used, ±25˚ and ±75˚, with the sign of the rotation counter-
balanced within each condition. For set size, subjects were exposed to either two
targets (2T) or 12 targets (12T). In the 12T condition, target locations were
pseudorandomly presented at 12 possible locations (0˚, 30˚, 60˚, 90˚, 120˚, 150˚,
180˚, 210˚, 240˚, 270˚, 300˚, 330˚), where the same location was never repeated in
consecutive trials. In the 2T condition, two targets were presented, and the loca-
tions were randomized across subjects to include one position from the 12 possible
locations above and its opposite 180˚ away (Fig. 1a). Within a subject, targets were
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presented pseudorandomly, where the same target was not repeated more than
twice in a row. At the start of every trial, to position their hand in a central “start”
position (5 mm radius), subjects used a dynamic visual ring that was scaled based
on their distance from the start. After holding the start for 500 ms, a visual target
appeared and cursor feedback was removed.

In a baseline block (36 trials), subjects reached to the targets with veridical
endpoint feedback. At the start of the subsequent rotation block, the rotation was
abruptly applied and was maintained for 300 trials, all with endpoint feedback.
Finally, in the washout block, subjects were told to cease any strategy they may
have adopted to counter the rotation and reach directly for each target. At the start
of the experiment, subjects were told to do their best to land the cursor on the
target. If the cursor hit the target, a pleasant chime was sounded, otherwise an
aversive buzzer was sounded. In the washout block a neutral sound was played after
each reach. Critically, to limit implicit sensorimotor adaptation and better isolate
strategic explicit learning, all feedback was delayed by 2 s on every trial28–31.

Movement angles were computed as the angle of the hand, relative to the target,
when it crossed the invisible target ring of 7 cm. All movement angles were rotated
to a common reference frame about the 0˚ axis of the unit circle. In all experiments,
RT was measured as the time elapsed from target appearance to the hand leaving

the start circle (i.e., 5 mm from the center of the tablet), and MT was measured as
the duration of the movement from the end of the RT to the time at which the
hand crossed the invisible workspace ring. Lastly, trials where RTs exceeded three
standard deviations above or below a subject’s mean RT (1.30% of trials), or trials
where movement angles exceeded three standard deviations above or below a
subject’s mean movement angle (0.87% of trials), were excluded from analyses (the
latter exclusions were not performed for the sign error analysis in Fig. 3).

Experiment 2. Subjects (N= 32) performed two tasks (FREE and FORCED;
Fig. 1b), with the order of completion counterbalanced, as well as the rotation sign
used in the FORCED task (−90˚ vs. 90˚). The FREE task was designed to verify the
classic signature of mental rotation, and the FORCED task was designed to
interrupt mental rotation.

FREE task. At the start of every trial, subjects used continuous cursor feedback to
position their hand in a central “start” position (5 mm radius). After holding for
400 ms, a visual target appeared and cursor feedback was removed. Participants
were instructed to make a rapid, straight shooting movement to the target. The trial
concluded when the hand crossed an invisible ring (8 cm radius), at which point
feedback of the cursor was provided at the location where the hand crossed the
ring. Slow MTs were discouraged: If MT exceeded a 700 ms limit, a “too slow”
warning was delivered visually to the subject by the task software. In line with the
instructions, subjects moved straight and rapidly, with a mean MT of 208.32 ± 8.54
ms (standard error of the mean).

Subjects were instructed that they would be performing a number of trial
“pairs” (Fig. 1b, top): in the first trial of each pair, the “learning” trial, subjects were
instructed to reach directly at the displayed target and observe where the feedback
cursor landed. In learning trials, the target was blue and appeared in one of four
off-cardinal locations (10˚, 100˚, 190˚, 280˚). In the second trial of the pair, the
“execution” trial, subjects were told to apply what they learned about the
relationship between their movement and the resultant feedback and attempt to
make the cursor terminate within the target. In execution trials, the target was red
and appeared in one of the three locations in which the learning target did not
appear. Target locations were pseudo-randomized within and between trial pairs.
Subjects performed 140 trial pairs. This task was modeled after a previous study22,
but with the distinction that subjects were not provided with an explicit symbolic
cue regarding the exact solution to the rotation; instead, subjects had to determine
the rotation’s size and sign themselves, so that our task echoed canonical
visuomotor adaptation paradigms4.

Rotations used in the learning trials ranged from −90˚ to 90˚ by 15˚ intervals.
Rotations were pseudo-randomized throughout the task, and each rotation was
seen on 10 different trial pairs, except for the 0˚ null rotation, which was seen on 20
trial pairs. Each subject received an individualized schedule of rotation magnitudes
and target locations.

Analyses were conducted on execution trials only, limited to trials where there
was an imposed rotation. Movement angles were computed as the angle of the
hand, relative to the target, when it crossed the invisible target ring. All movement
angles were rotated to the same 0˚ target axis and matched to a single sign for
analysis (see Experiment 1). The first analysis was a regression on subjects’
reaching angles, relative to the imposed rotation, on execution trials. We chose to
use the absolute reaching angle since on a significant number of trials (8.71%),
subjects approximated the magnitude of the rotation but misinterpreted the sign
(i.e., were within 15˚ of the “flipped” solution). No significant difference in mean
RTs was found between correct and “flipped” execution trials (t(31)=−0.99, p=
0.33), suggesting that subjects did not hesitate and change their mind on flipped
trials, but simply misremembered the proper clockwise/counterclockwise direction
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at the onset of the execution trial (see Results and Discussion for a further
discussion of sign errors).

A one-sample t-test was performed on the fitted slopes resulting from the
regression of rotation magnitude and movement angle to test for the presence of a
reliable trend. The second analysis was a regression of each subject’s realized
movement angles onto corresponding RTs. A one-sample t-test was performed on
the fitted slope values to test for the presence of a reliable trend. Moreover, each
subject’s slope derived from this regression analysis served as their mental rotation
“pace”, in the units of milliseconds per degree22. We also performed a similar linear
regression using the imposed rotation angles as the predictor variable to confirm
that it echoed the regression using the actually realized movement angles; both
analyses yielded comparable results, though the movement angle regression is likely
to be a better estimate of a subject’s true mental rotation pace21.

FORCED task. The FORCED task utilized a modified forced-response-time
paradigm to interrupt putative mental rotation (Fig. 1b, bottom;38,39). Like the
FREE task, at the start of every trial subjects used continuous cursor feedback to
position their hand in a central “start” position. Once subjects were positioned in
the start, a countdown of four tones was emitted from the computer speakers
(Logitech). The tones were played 600 ms apart, and subjects were instructed to try
and synchronize the initiation of their reach with the fourth tone, effectively
“replacing” that tone. The experiment and instructions were deliberately designed
to emphasize early movements over late ones: if the subject initiated their move-
ment >100 ms after the fourth tone, the screen was blanked and a “Too Late”
message was displayed. Subjects could initiate their movement any time after target
appearance, to encourage early RTs. However, if they moved before the target
appeared the screen was blanked and a “Too Early” message was displayed. Similar
versions of this forced-response-time task have been previously used to study the
effect of restricted RTs on visuomotor learning and movement preparation38,39.

Subjects were instructed to prioritize reaching on time, and, secondarily, to try
and land the cursor on the displayed target. On each trial, the targets could appear
in 1 of 12 off-cardinal locations (10˚, 40˚, 70˚, 100˚, 130˚, 160˚, 190˚, 220˚, 250˚,
280˚, 310˚, 340˚). Endpoint cursor feedback was presented after the subjects passed
the invisible target ring, and the appearance of the feedback was delayed by 500 ms.
Like Experiment 1, this brief delay was added to inhibit implicit adaptation to the
imposed rotation and thus isolate the cognitive re-aiming process28–31. A briefer
delay was used in this experiment because more trials were desired, and 500 ms
delays have been shown to significantly attenuate implicit adaptation28. The delay
manipulation was successful, yielding subtle, though significant aftereffects (µ=
1.98˚; t(31)= 2.06, p= 0.048).

The moment of target appearance was titrated such that subjects had varying
amounts of time with which to compute the target location, plan, and execute their
movements. These windows reflected the time elapsed between target appearance
and the fixed moment of the fourth tone. Seventeen test RT windows were used,
ranging from 200 to 600 ms by 25 ms intervals. An asymptotic RT window was also
used, giving subjects up to 1200 ms to react. We reiterate that because subjects
could move early in our variant of this task (i.e., any time after target appearance),
the windows acted as “guides” rather than being perfectly predictive of subjects’
realized RTs (i.e., subjects tended to move before they needed to; see Results).
Finally, catch trials of 0 ms were used to ensure that subjects stayed on task and
executed movements on time even if they had not perceived the target yet.

Subjects performed the FORCED task in three blocks. To get accustomed to the
task, in the first block subjects performed 64 baseline trials with veridical endpoint
cursor feedback, with pseudo-randomized RT windows and target locations. In the
subsequent rotation block, subjects performed 624 trials, with 35 trials at each of
the test RT windows, 14 trials at the asymptotic RT window, and 15 catch trials.

For the rotation block, a fixed rotation of 90˚ (or −90˚, for counterbalancing) was
imposed on the cursor. Subjects were thoroughly educated about the rotation
before this block began. Subjects were told to try and counter the rotation and land
the cursor on the target every trial. Due to the difficulty of the task, subjects were
encouraged by a monetary bonus of up to $5 based on their performance in the
rotation block, and were informed that missed trials (reaching too late or too
slowly) would count against their performance score. Finally, in the aftereffect
block, subjects performed 48 trials with a 1200 ms RT window, pseudo-randomized
target locations, and no cursor feedback. Subjects were told to reach directly for the
target on every trial of the aftereffect block. These data were later compared to the
baseline data to get an estimate of any implicit adaptation.

All analyses were conducted on trials where subjects reached on time (78.90% of
trials). Like Experiment 1 and the FREE task, movement angles were computed as
the angle of the hand relative to the target when it crossed the invisible target ring.
Importantly, subjects followed the instructions and made straight shooting
movements: Movement times were rapid (µ= 128.13 ms) and no feedback was
provided during the reach, which helped to ensure movements were straight.
Movement speed was computed by taking the average of the derivative of hand
position from the time subjects left the start circle to the time they crossed the
invisible target ring (due to the rapid “shooting” movement required by the task,
average speed was used instead of peak speed to reduce noise in the estimate as
subjects often reached peak speed after passing the target; we note that this
particular approximation of speed did not influence the main results of the analyses
related to movement speed).

Our first analysis involved investigating subjects’ reach angles as a function of
RT. RT bins were taken every 25 ms, from 0ms through 400 ms, with the final bin
including all RTs above 400 ms. Similar to previous results39, in catch trials (0 ms
RT window) subjects prioritized the timing demands of the task when no target
appeared and moved relatively randomly around the circle, with some slight biases.
A single “critical RT bin” was computed, after which reaches were determined to be
primarily non-random (Supplementary Fig. 1). Linear regressions were performed
on subjects’ full distribution (i.e., no binning) of reach angles and RTs after the
critical RT bin, and a t-test was performed on the resulting slopes to test for the
presence of a significant trend. These slopes were used as the mental rotation
“pace” parameters in further analyses.

Mental rotation paces were compared between the FREE and FORCED tasks in
four ways. First, a one-sample t-test was performed to show that the null could not
be rejected. Second, a Bayes factor was computed on the resulting one-sample t-
value using the JZS (Jeffreys–Zellner–Siow) method63 to quantify evidence for the
null. Third, both parametric (Pearson) and non-parametric (Spearman)
correlations were conducted between the values to test for a significant relationship
that is robust to outliers. To confirm the robustness of this correlation, a secondary
analysis that involved fitting a sigmoid to the data was used as an alternative
method for extracting the pace parameter in the FORCED task (Supplementary
Fig. 2). Lastly, two supplementary modeling analyses were conducted to test
alternative interpretations, involving both a mixture model analysis (see below;
Fig. 5) and a neural model which modeled movement speed and direction using a
cosine-tuned population coding model (Supplementary Fig. 6).

Experiment 3. Subjects (N= 10) performed the FORCED task used in Experiment
2 (Fig. 1b), with one critical difference: only two target locations were used, where
one was drawn from 1 of the 12 possible locations of Experiment 2 (FORCED), and
the other target was its 180˚ counterpart. The particular pair of targets used, and
the sign of the 90˚ rotation, were counterbalanced across subjects. All task
instructions and analyses matched those described in Experiment 2. MTs were
similarly rapid (µ= 111.25 ms), and aftereffects were similarly small (µ= 3.17˚)
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but did not reach significance (t(9)= 2.12, p= 0.06). For comparison purposes, the
same “critical” RT bin was used in this experiment as that derived from Experiment
2 (RTs > 150 ms; see above).

Experiment 4. Subjects (N= 36) performed a reaching task (Fig. 9) that was
identical to Experiment 1 in terms of basic trial design, visual stimuli, and feedback
timing. In a baseline block (32 trials), subjects reached to visual targets with ver-
idical feedback. In the rotation learning block (144 trials), subjects experienced a
consistent 45˚ rotation (or −45˚, for counterbalancing), and received cursor
feedback on 50% of those trials. In the learning block, subjects were divided into
two groups: a 2T group and an 8T group. In the 2T group, learning targets
appeared at one of two locations 140˚ apart, with the specific pair of locations
counterbalanced across subjects. In the 8T group, learning targets appeared at 1 of
8 possible locations, spaced equally in a 140˚ region, with the specific locations also
counterbalanced across subjects.

The generalization block tested how subjects extrapolated their learning to a
new region of space. On 50% of trials, targets appeared at one of the previously
presented target locations, and in the other 50% of trials targets appeared at 1 of 10
equally spaced novel locations within the 220˚ region of the workspace lying
outside of the 140˚ training region. To test generalization without allowing for new
learning at the generalization targets, no feedback was given on generalization
probe trials. However, feedback was shown on all trials where a previously seen
learning target was presented. Thus, learning at the original training locations was
maintained, and the overall probability of seeing feedback was matched between
the generalization and learning blocks (the latter was done to limit the “context
change” brought about by the generalization block). In the generalization block,
subjects were instructed to reach to novel targets in a manner that would cause the
cursor to hit the target if they had seen the feedback. In a final washout block,
subjects were told to cease any strategy they were using to counter the rotation and
reach directly for the presented targets.

Movement angles were computed in the same manner as Experiment 1. Given
the limited number of feedback trials in the rotation learning block (72 trials), we
first analyzed whether subjects successfully adopted a strategy to counter the
rotation in this brief period and with the added interference of the no-feedback
trials. We used an a priori learning criteria derived from a recent paper64: In each
subject, a one-sample t-test was performed against 0˚ on movement angles over the
last 4 trial cycles (optimal movement angle= 45˚). Four out of 36 subjects showed
non-significant asymptotic learning (p > 0.05), and were thus excluded from the
generalization analysis. Following Experiment 1, trials where RTs exceeded three
standard deviations above or below a subject’s mean RT, or movement angles
exceeded three standard deviations above or below a subject’s mean movement
angle, were excluded (1.15% of trials).

Generalization was analyzed as follows. First, subjects’ movement angles were
rotated to a common reference frame so that the learning target region lied between
20˚ and 160˚. For visualization purposes, movement angle generalization functions
were computed according to both the raw target angle (Fig. 10a) and the change in
movement angle as a function of the target’s absolute distance from the nearest
learning target (Fig. 10b). For group comparisons, a trial-by-trial regression
analysis was performed using movement angles on generalization trials (i.e.,
movements to novel targets) as the dependent variable, and four separate z-scored
regressors: the trial number, the distance of the current target from the nearest
learning target, the subject’s RT, and the interaction of RT and distance. (Non-
distance-related regressors were added to better isolate the main effect of target
distance.) Two-sample t-tests were performed on the resulting beta values of
interest (Fig. 10c).

For completeness, we also conducted a more traditional generalization analysis,
where Gaussian functions are fit to each subject’s generalization data35. However,
because of nearly complete generalization in many subjects (especially in the 8T
group), various combinations of the height, width, and offset free parameters can
yield flat generalization functions, leading to unstable parameter estimation (see
Supplementary Fig. 7). Thus, we opted for the more interpretable regression
approach.

Mixture model. A mixture model was used to characterize data in the FORCED
tasks from Experiments 2 and 3. In this analysis, we modeled reach data as a
mixture of two circular normal (Von Mises) distributions representing both
positive (correct) and negative (flipped) directed reaches, and a single uniform
distribution that represented random reaches. The model had probability density
function,

P ¼ w1
eκcosðx�μ1Þ

2πI0ðκÞ
þ w2

eκcosðx�μ2Þ

2πI0ðκÞ
þ ð1� w1 � w2ÞUð�π; πÞ; ð1Þ

where I0 is the modified Bessel function of order 0, w is the weight given to each
distribution (w1+ w2 ≤ 1), κ is the concentration parameter (which we fit as a
single parameter between the two Von Mises pdfs), and U(−π, π) is the uniform
probability density function of the unit circle. The mean parameter in Eq. 1, µ,
represents the mean of a given Von Mises, including one mean for positively signed
reaches and one for negatively signed reaches (µ1 > 0, µ2 ≤ 0). Data were pooled

across subjects in each RT bin and parameters were optimized separately in each
bin using maximum likelihood estimation, minimizing the negative log likelihood
with the MATLAB function fmincon. Fifty randomized starting parameter values
were used for each fit to avoid local minima, and Aikake information criterion
values (AICs) were either summed over all RT bins after the critical 7th bin or
compared separately at each bin for model comparisons. Two models were com-
pared: in the Free-µ model, both µ parameters could vary freely. In the Fixed-µ
model, µ parameters were fixed at our a priori prediction of µ1=+90˚ and µ2=
−90˚. Thus, the Fixed-µ model had two fewer degrees of freedom than the Free-µ
model.

Code availability. The code for the task and for data analyses are available from
the corresponding author upon request.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon request.
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