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Taylor JA, Hieber LL, Ivry RB. Feedback-dependent generaliza-
tion. J Neurophysiol 109: 202–215, 2013. First published October 10,
2012; doi:10.1152/jn.00247.2012.—Generalization provides a win-
dow into the representational changes that occur during motor learn-
ing. Neural network models have been integral in revealing how the
neural representation constrains the extent of generalization. Specifi-
cally, two key features are thought to define the pattern of general-
ization. First, generalization is constrained by the properties of the
underlying neural units; with directionally tuned units, the extent of
generalization is limited by the width of the tuning functions. Second,
error signals are used to update a sensorimotor map to align the
desired and actual output, with a gradient-descent learning rule en-
suring that the error produces changes in those units responsible for
the error. In prior studies, task-specific effects in generalization have
been attributed to differences in neural tuning functions. Here we ask
whether differences in generalization functions may arise from task-
specific error signals. We systematically varied visual error informa-
tion in a visuomotor adaptation task and found that this manipulation
led to qualitative differences in generalization. A neural network
model suggests that these differences are the result of error feedback
processing operating on a homogeneous and invariant set of tuning
functions. Consistent with novel predictions derived from the model,
increasing the number of training directions led to specific distortions
of the generalization function. Taken together, the behavioral and
modeling results offer a parsimonious account of generalization that is
based on the utilization of feedback information to update a sensori-
motor map with stable tuning functions.

generalization; modeling and simulation; motor adaptation; motor
control; motor learning

GENERALIZATION HAS BEEN USED as a probe on the representa-
tional changes that occur during learning (Poggio and Bizzi
2004; Thoroughman and Shadmehr 2000). A common method
to study generalization is to employ a visuomotor perturbation
that introduces errors between a desired movement and the
actual movement. Participants are trained with this perturba-
tion in one movement direction or in a limited region of the
workspace and then tested with movements in other directions
(Ghahramani et al. 1996; Krakauer et al. 2000; Pine et al.
1996). How the system generalizes from a limited training set
can provide insight into computational principles underlying
sensorimotor learning and control (Poggio and Bizzi 2004),
such as relating the pattern of generalization to the neural
tuning properties (Donchin et al. 2003; Poggio and Bizzi 2004;
Thoroughman and Taylor 2005).

A range of visuomotor perturbations have been employed in
studies of generalization. Somewhat surprisingly, the results
have failed to provide a consistent picture of generalization.

Visuomotor rotations in which an angular displacement is
imposed between the position of the unseen hand and a visual
cursor results in rather narrow generalization (Krakauer et al.
2000; Pine et al. 1996). Generalization is prominent for direc-
tions similar to the trained direction but falls off sharply as the
probed directions differ from the trained direction (Krakauer et
al. 2000; Pine et al. 1996; Tanaka et al. 2009). Visuomotor gain
adaptation, in which the amplitude between hand movement and
cursor displacement is altered, also produces maximal generaliza-
tion near the direction of training but exhibits considerable gen-
eralization for all directions of movement (Krakauer et al. 2000;
Pearson et al. 2010; Vindras and Viviani 2002). Similarly, linear
shifts of the visual input, the type of perturbation created by prism
glasses, generalize relatively broadly across the workspace
(Ghahramani et al. 1996). Dynamic perturbations such as those
employed in studies using force field environments have also
been used to study generalization. The results from this work
indicate that the pattern of generalization is dependent on the
complexity of the perturbation (Donchin et al. 2003; Thor-
oughman and Shadmehr 2000; Thoroughman and Taylor
2005).

While certain features of generalization functions are similar
across these studies (e.g., maximal generalization for move-
ments most similar to the training set), the subtle differences
have been the focus of considerable debate given their potential
to reveal the representational changes that occur during senso-
rimotor learning. Two key features are thought to define the
form of generalization. First, generalization will be constrained
by the underlying units that control the movements. For exam-
ple, if the units are directionally tuned neurons, generalization
is constrained by the width of the tuning functions (Thorough-
man and Shadmehr 2000). Second, errors are used to update
the sensorimotor map, altering the weights between the tuned
units and desired directions of movement (Pouget and Snyder
2000). Learning algorithms combine these two features to
ensure that the error only modifies those units that were
responsible for the error. As such, if the underlying units
represent movement space broadly, generalization will be
broad because many units are affected by the error signal
(Thoroughman and Shadmehr 2000). In contrast, if the units
represent space narrowly, then generalization will be limited
given that units tuned to distant directions are unaffected by the
error. Thus patterns of generalization have been used to iden-
tify computational properties of the motor control system
(Ghahramani et al. 1996; Poggio and Bizzi 2004; Pouget and
Snyder 2000; Thoroughman and Shadmehr 2000).

As described above, generalization studies have been ex-
ploited to explore the tuning properties of motor control ele-
ments (Thoroughman and Shadmehr 2000). For example,
Thoroughman and Taylor (2005) trained participants to move
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in force field environments with varying degrees of dynamical
complexity. While learning was reasonably similar across
conditions, the generalization functions were quite different.
To account for these differences, two hypotheses were sug-
gested. One centered on the idea that there exists a heteroge-
neous population of tuning functions with a range of widths; by
this account, the relevant set of tuning functions for learning
will vary with task complexity. The second hypothesis cen-
tered on the idea that the width of the tuning functions is
altered with training, and that the extent of these changes will
vary with task complexity. While experimental studies testing
these hypotheses have not been reported, both hypotheses
necessitate that the tuning function of the neural units must be
different to learn different environmental complexities.

A few studies have asked how error signals may contribute
to task-dependent effects on generalization. Depending on the
form of a visuomotor perturbation (e.g., rotational or transla-
tional), generalization can either be expressed in a Cartesian
reference frame or rotational (Ghahramani et al. 1996;
Krakauer et al. 2000). Moreover, the strength of generalization
is influenced by the availability of error information: Adapta-
tion (Rapp and Heuer 2011) and generalization are stronger
when feedback is continuously available during the reach
compared with when it is provided only at the end of move-
ment (Hinder et al. 2008; Shabbott and Sainburg 2010). Al-
though the consequences of these error manipulations have not
been examined in a formal manner, these results suggest that
task-dependent differences in generalization may reflect vari-
ation in the availability of error information for adapting the
sensorimotor system. Specifically, a change in error informa-
tion may influence generalization because more states are
subject to error-based modification during training.

The present study was designed to provide a systematic
analysis of the influence of error information on generalization.
In the main experiment, participants were trained on a visuo-
motor rotation task, with the training phase limited to a single
direction of movement, followed by generalization to un-
trained, distant locations. Between groups, we manipulated the
form of the visual feedback, providing either endpoint or
online feedback and within the latter varying whether or not the
movement had to terminate in the target location. While the
groups displayed similar learning curves during the training
period, they exhibited strikingly different generalization pat-
terns. Building on previous work (Pearson et al. 2010; Tanaka
et al. 2009; Thoroughman and Shadmehr 2000; Thoroughman
and Taylor 2005), we employed a radial basis function network
to simulate the patterns of generalization. We show that qual-
itatively different patterns of generalization can be produced in
such a network because of variation in the error signal, even if
the underlying tuning functions remain invariant. A second
experiment was conducted in which we extended the range of
training directions to test a novel prediction derived from the
model.

MATERIALS AND METHODS

Participants and Experimental Apparatus

Sixty young adults (35 women/25 men, age 22 � 7 yr) were
recruited from the research participation pool maintained by the
Department of Psychology at the University of California, Berkeley.
All participants were right-handed, as verified with the Edinburgh

handedness inventory (Oldfield 1971), and received class credit. The
experimental protocol was approved by the University of California’s
Institutional Review Board, and all participants gave informed con-
sent.

Participants made center-out, horizontal reaching movements to
visually displayed targets, sliding their right hand across a digitizing
tablet while holding onto a digitizing pen (Intuous 3; Wacom, Van-
couver, WA). Movement trajectories were sampled at 100 Hz. The
stimuli and feedback cursor were displayed on a 15-in., 1,280 �
1,024-pixel-resolution LCD computer monitor (Dell, Dallas, TX)
horizontally mounted 25.4 cm above the table. Since the monitor
occluded vision of the hand, visual feedback was in the form of a
small circular cursor (3.5 mm).

Experiment 1

Forty participants were assigned to one of four experimental groups
(Fig. 1), with ten participants per group. For all groups, the trial
started with the participant moving his or her hand such that the
feedback cursor was positioned in a starting circle (5-mm diameter).
After 1 s at this position, a green target (7-mm-diameter dot) appeared
on a blue ring (7 cm in radial distance from the starting circle). The
target could appear in one of eight locations (0°, 45°, 90°, 135°, 180°,
�135°, �90°, �45°). The participants were instructed to make a fast
reaching movement to the target.

For the endpoint-feedback (ENDPOINT) group, participants only
received endpoint feedback of the movement (knowledge of results).
These participants were instructed to make a fast reaching movement,
attempting to slice through the target. The feedback cursor disap-
peared when the participant’s hand exited the starting circle. When the
participant’s hand had moved 7 cm, a red cursor (3.5 mm) appeared
at the corresponding position (veridical or rotated) on the blue ring
and remained visible for 1 s. For the online-feedback (ONLINE)
group, feedback of hand position was provided during the entire
outbound portion of the movement. When the radial amplitude
reached 7 cm, the white cursor changed to red and remained posi-

Fig. 1. Different forms of visual feedback for a center-out reaching task
workspace. There were 8 target locations. Participants practiced reaching to all
locations in the baseline blocks. During the training block, participants only
moved to the target at 0° (green target) and a 30° rotation was applied to the
cursor. During the test block, participants reached to the training location (with
feedback) and the 3 probe locations (black, no feedback). Generalization to all
locations was tested in a no-feedback block at the end of training. A ring
connecting the target locations was visible during the reaches. The trial ended
for the ENDPOINT and ONLINE groups when the movement intersected this
ring, with feedback limited to the endpoint for the former (blue) and visible
until the hand intersected the target ring for the latter (cyan). The corrective
feedback group (purple) had online feedback and was required to hit the target
to end the movement. The return group (red) had online feedback during
reaches to the target and during the return movement to the starting position.
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tioned on the blue ring for 1 s (as with the ENDPOINT group).
Participants in the ENDPOINT and ONLINE groups were instructed
that the goal was to have the red feedback cursor be positioned as
close to the target as possible. In contrast, participants in the correc-
tive-feedback (CORRECTIVE) group received online feedback and
were required to bring the white cursor within the target circle to end
the trial. When any part of the cursor overlapped the target, the
feedback color changed to red and remained fixed in place for 1 s.

Participants in all three groups were trained to reach the blue ring
within 300–500 ms. If this criterion was met, a pleasant “ding” sound
was played; otherwise an unpleasant “buzz” sound was played. In
addition, if the movement time criterion was met and any part of the
feedback cursor overlapped the target, the participant received 1 point.
Note that CORRECTIVE participants always had to hit the target;
thus their bonus was solely dependent on the temporal criterion. The
points were tallied throughout the experiment, with the sum displayed
at the end of each block.

After the 1-s endpoint feedback delay, participants in the ENDPOINT,
ONLINE, and CORRECTIVE groups were required to reposition the
hand in the starting circle. The participant was guided to the starting
position by a white ring with a diameter equal to the distance of the
hand from the starting position. By the hand moving toward the
starting circle, this ring became progressively smaller. When the hand
was within 1 cm of the starting circle, the ring was transformed into
the white feedback cursor, allowing the participant to position the
hand within the starting circle.

Participants in the return-feedback (RETURN) group had contin-
uous online feedback of the cursor during both the out and back
phases of the movement. They were instructed to reach the target
within 300–500 ms, with the feedback cursor changing from white to
red when it overlapped any part of the target. The feedback cursor
remained fixed at this position for 1 s, before changing back to white.
Participants were instructed to keep their hand still during the 1-s
feedback interval. If the participant moved �1 cm from the terminal
position, a double buzz sound was played to remind the participant
that he or she should remain still during the feedback interval. Once
the feedback cursor turned white, the participant was instructed to
return to the starting circle. There was no temporal criterion for the
return movement, but online feedback was available at all times.

All participants made a total of 266 movements, divided into a
series of blocks (Fig. 1). The groups were initially trained with their
assigned feedback format for 64 baseline trials, with each of the 8
target locations presented 8 times. Feedback was veridical during this
phase, allowing the participants to become accustomed to the reaching
task and learn the desired movement speed. Participants then made
another 32 baseline movements, 4 to each target. On half of the trials,
feedback was presented. On the other half of the trials, the feedback
went blank at the start of the movement. Participants were not
informed whether a trial included feedback or not, only discovering
this once the movement started. On no-feedback trials, the participants
were instructed to just reach through the visible blue ring, attempting
to maintain their adopted movement velocity. For all groups, the
contracting white ring was used to guide the hand back to the starting
position after each no-feedback trial. This block was included to
provide the participants with experience at moving in the absence of
feedback.

The two baseline blocks were followed by a 40-trial rotation block.
For this block, all of the reaches were to a single “training” location
at 0°. Feedback of hand position (either online or endpoint, depending
on the group) was rotated 30° counterclockwise (CCW). The rotation
block was followed by a test block in which reaches to the training
location were intermixed with reaches to three probe locations (135°,
180°, and �135°). Rotated visual feedback was only provided on
trials in which the target appeared at the training location; no feedback
was given when the movements were at the probe locations. The test
block consisted of 90 reaches, 45 to the training location and 15 to
each of the three probe locations. The target sequence was pseudo-

randomly distributed such that, for every four movements, two were
to the training location and two were to probe locations. We restricted
the probe locations to those that were most distant from the training
location since these are most informative for assessing the reference
frame of generalization (see below).

The experiment concluded with a final no-feedback block com-
posed of 40 trials, 5 to each of the 8 target locations. Visual feedback
was absent during this entire block, providing an assessment of
generalization at all locations in the absence of (re)learning.

The experimental session lasted �40 min.

Experiment 2

Twenty participants were assigned to one of two experimental groups,
the ENDPOINT-TWO and RETURN-TWO groups, with ten participants
per group. The baseline blocks were the same as in experiment 1. In the
rotation block, participants were trained with the rotation at two locations
(0° and �45°), with 20 trials at each location. In the test block, reaches
to these two locations were pseudorandomly interspersed with trials to the
three probe locations. After the rotation block, participants experienced
the no-feedback block composed of 40 trials, 5 to each of the 8 target
locations, to assess generalization at all target locations.

For the ENDPOINT-TWO group, participants received only end-
point feedback of the movement, similar to the ENDPOINT group
from experiment 1. For the RETURN-TWO group, participants re-
ceived online feedback throughout the entire movement, similar to the
RETURN group from experiment 1. Feedback was provided at all
locations during the baseline blocks and only for movements to the
two training locations in the rotation and test blocks.

Data Analysis

Kinematic and statistical analyses were performed with MATLAB
(MathWorks, Natick, MA). To assess adaptation and generalization,
we focused on the initial heading angle of the hand. Each movement
trajectory, regardless of the actual target location, was rotated to a
common axis with the target location at 0°. A straight line was
connected between referent points 1 cm and 3 cm along the trajectory,
and we computed the angle between this line and the 0° reference line.
With this convention, positive angles indicate a positive deviation
along the y-axis and negative angles indicate a negative deviation
along this axis. To compute the rate of adaptation, we fit the time
series of heading angles in the rotation block with an exponential
function using the simplex method (Nelder and Mead 1965). The
adaptation rate and final asymptotic values are reported in RESULTS.

We also computed the curvature of each movement in order to assess
the presence and form of corrective movements. Movement curvature
was defined as the total absolute curvature in Cartesian coordinates:

C �
�vxay � vyax�
�vx

2 � vy
2�3⁄2

where vx and vy are the x- and y-components of velocity and ax and ay

are the x- and y-components of acceleration. Velocity and acceleration
were computed with a 4th-order Savitsky-Golay filter. This filter
introduces less noise than basic difference differentiation (Savitzky
and Golay 1964; Smith et al. 2000).

Movement onset was defined by identifying the maximum velocity
and scanning the kinematic record backward to determine the last sign
reversal in the velocity record. For the ONLINE and ENDPOINT
groups, movement time was defined as the interval between move-
ment onset and the time at which the hand crossed the target ring. For
the CORRECTIVE and RETURN groups, movement time was quan-
tified as the interval between movement onset and the time at which
any part of the feedback cursor overlapped the target circle.

We report the mean and the 95% confidence interval of the mean
for all dependent variables subjected to statistical evaluation.
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Modeling

We simulated generalization functions, using a radial basis function
network (Tanaka et al. 2009). Identical basis units were employed for
all four groups, with the units defined by wrapped Gaussian functions
that encoded hand-centered reach directions:

gn
i (��

desired) � a �
1

�2��2 �
k�2�

2�

exp��(�n
desired � �i)2 � k

2�2 � (1)

The activity for unit i on trial n is dependent on the difference between
that unit’s preferred direction (�i) and the desired target direction
(�n

desired). Each unit in the network has the same tuning breadth (�)
and baseline activity (a). We employed a wrapped Gaussian function
because it equates angles separated by 2� (e.g., 0 � 2�).

The population-based vector for the desired reach direction (r�n
desired) is

given by the sum of the weighted (w) activity of each unit (inner
product):

r�n
desired � �

i�0

2�

w→ igi��n
desired� � WG��n

desired� (2)

We used a gradient-descent learning rule to change the weights (w),
where each weight was adjusted based upon the degree of its activity
and the observed error.

Models of error-based learning need to consider when the error is
generated. In many studies of visuomotor adaptation, the error is defined
at a single point in time—for example, when the movement amplitude
equals the target distance or at the terminal location of the movement
when participants make a single, outbound reach (Izawa and Shadmehr
2011; Tseng et al. 2007). At the other extreme, feedback information, at
least when online feedback is available, could provide a continuous
error signal. We opted to employ an intermediate approach, con-
sidering two, discrete error signals, one used to update the weights
based on errors observed during the outbound phase of the move-
ment and a second used to update the weights on the corrective, or
return phase of the movement (see below). For the ENDPOINT and
ONLINE groups, only the outbound error was used to update the
weights (Eq. 3). For the CORRECTIVE and RETURN groups,
both the outbound (Eq. 3) and corrective/return (Eq. 4) errors were
used to update the weights. The two error signals were modulated
by their own learning rate �:

	Woutbound � ��1G��n
desired�eoutbound (3)

	Wcorrection/return � ��2G��n
correction/return�ecorrection/return (4)

The error (Eq. 6) for the outbound portion of the movement was
defined as the difference between the desired movement direction (Eq.
2) and the target direction (Eq. 5) at the onset of the movement:

r�n
target � �cos��n

target�
sin��n

target� � (5)

eoutbound � Rr�n
desired � r�n

target (6)

To simulate the rotation, the desired reach vector was rotated by a
rotation matrix, where 
 � 30°:

R � � cos(�) sin(�)

�sin(�) cos(�) � (7)

The error for the corrective portion of the movement was defined similar
to the outbound error (Eq. 9), but here the desired movement direction
(Eq. 2) was based on required direction for the correction to the target
location or the return movement to the home position (Eq. 8):

r�n
correction/return � �cos��n

correction/return�
sin��n

correction/return� � (8)

ecorrection/return � Rr�n
desired � r�n

correction/return (9)

For the RETURN group, the �n
correction/return direction was set to 180°.

For the CORRECTIVE group, different directions were simulated to
determine the direction of the correction that resulted in the appro-
priate pattern of generalization (see RESULTS). Note that only a single
time point was used for each error term. In reality, there is a
continuous error signal. While it is unknown whether control pro-
cesses use a continuous process, our choice here was motivated by
two considerations. First, using discrete samples greatly simplifies the
modeling work, especially since a continuous error signal requires
making an assumption about the desired trajectory. Second, our main
interest here is to test of a proof of concept regarding the potential
impact of different feedback signals on generalization. As such, the
inclusion of two discrete samples, one for the initial, outbound phase
of the movement and the other for the corrective/return phase, should
suffice. It is important to note that our model does not represent a time
series of heading directions but rather only two distinct time points for
the heading direction, one time point for the heading direction of the
outbound phase and one for the corrective/return phase. To simulate
the outbound phase, the units generate a population vector specifying
a single heading direction for the entire outbound phase of the
movement. The difference between this heading angle and the target
angle specified the outbound error. This error was applied to all of the
units; based upon the gradient learning rule (Eq. 3), only the weights
associated with the units that were highly activated would be signif-
icantly altered. To simulate the corrective/return phase, a population
vector is generated to specify the heading direction for the corrective/
return phase of the movement. The difference between this heading
angle and the angle of correction to the target or start position
specified the corrective/return error. This error was then applied to all
of the units in a similar manner as for the outbound error. Thus there
are only two time points for updating throughout the movement.

To generate trajectories for plotting purposes, the two heading
directions can be multiplied by a time vector to mimic actual move-
ment time. Note that we did not directly compare observed trajectories
with model-produced trajectories because our fitting procedure only
compares the observed and predicted heading angles (see below).
While the model could be set to use any number of time points and
thus generate full trajectories, this becomes computationally intracta-
ble, leading us to adopt the two-time point simplification. A similar
simplification has been used in previous studies, but only using one
time point to update movements (Tanaka et al. 2009; Throughman and
Shadmehr 2000; Thoroughman and Taylor 2005).

The best-fitting parameters of the model were found by a nonlinear
least-squares fitting procedure based on the Gauss-Newton method. This
procedure was set up to minimize the averaged heading angle for each
group for the first movement to each target during the no-feedback block.
Heading angle was calculated as the difference between a line from the
start position to the target location and a line with endpoints based on
hand position, 1 and 3 cm into the movement. We constrained parameters
a, �, and �outbound to take on a single value for all four groups.
Parameters �n

correction/return and �n
correction/return were allowed to

differ for the CORRECTIVE and RETURN groups. For experiment
2, the parameter values for the ENDPOINT and RETURN groups
were held constant for the model simulations. The model was
trained nearly identically to experiment 1, except that there were
two training locations during the rotation block and the test block.

RESULTS

Experiment 1

Kinematic differences between feedback groups prior to
rotation training. We first sought to determine how feedback
might alter movement kinematics in the absence of a rotation.
As described above, participants in the CORRECTIVE and
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RETURN groups were required to hit the target. In contrast, for
participants in the ENDPOINT and ONLINE groups the trial
ended when the hand passed the target ring. Since the second
baseline block included reaches to all eight targets, with and
without feedback, we focused on these data to assess the effect
of feedback on movement time and curvature.

Average movement times were within the 300–500 ms time
window for both feedback-present and feedback-absent trials
in all four groups (Table 1). A two-way ANOVA revealed no
effect of feedback (present/absent) (F1,36 � 2.17, P � 0.15).
However, there was a significant effect of group (F3,36 � 6.85,
P � 0.004). Movement times were progressively longer as the
amount of feedback increased, becoming especially pro-
nounced in the groups that were required to hit the target. A
similar pattern was observed in the evaluation of movement
curvature: The degree of movement curvature was similar for
feedback-present and feedback-absent trials (F1,36 � 0.06, P �
0.98), while the effect of group was reliable (F3,36 � 2.68, P �
0.05). Participants in the CORRECTIVE and RETURN groups
had more movement curvature, presumably due to the fact that
these participants had to make corrective, secondary move-
ments when the initial trajectory failed to terminate at the
target. Consistent with this assumption, the curvature differ-
ences appear to be limited to the latter phase of the movements
since the group effect was not significant in an analysis of
heading angles (F1,36 � 2.17, P � 0.10).

An additional comparison of baseline performance was re-
stricted to the data from the RETURN group. For this group,
the feedback cursor was visible during both the out and back
phases of the movement on the feedback trials. On the no-

feedback trials, the return movement was guided by the con-
tracting ring. Despite this pronounced methodological differ-
ence, the duration of the return movement was similar for the
two groups (t9 � 1.59, P � 0.15). Indeed, when all four groups
were considered, there was no difference in the duration of the
return movement between groups (F3,36 � 1.08, P � 0.37).

Kinematic differences during and after rotation training.
After baseline training, the rotation block was introduced. A 30°
CCW rotation was imposed for 40 movements, all of which were
made to a single target at 0°. Rapid adaptation was observed in all
four groups, with the final heading angles falling short of the full
rotation (Fig. 2). An exponential function was fit to the time series
of heading angles for each participant in each group. There was no
difference in final degree of adaptation (F1,36 � 1.33, P � 0.28)
or adaptation rate (F1,36 � 0.79, P � 0.51), suggesting that
differences in feedback conditions did not significantly affect the
course of adaptation (Table 1).

After this short adaptation phase, participants were tested on
the test block in which three distant probe locations (135°,
180°, �135°) were intermixed with the training location (0°).
Feedback was limited to the training location. Changes from
baseline in the heading angles to the probe locations provide a
signature of generalization (Fig. 3). These data reveal subtle
but important differences between the groups in the pattern of
generalization at the probe locations. Main effects were reli-
able for the factors group (F3,36 � 6.55, P � 0.001) and probe
location (F2,72 � 6.22, P � 0.003). The average trajectories to
the probe targets in the ENDPOINT and ONLINE groups were
biased downward in the workspace, a change that is opposite to
the rotational direction observed at the trained location. In
contrast, participants in the RETURN group showed general-
ization consistent with the direction of the rotation at the

Table 1. Temporal, kinematic, and learning measures for the
four groups

Groups
Baseline

FB
Baseline No

FB Final Value Rate

Movement time, s
ENDPOINT 0.37 � 0.02 0.38 � 0.03
ONLINE 0.39 � 0.04 0.39 � 0.04
CORRECTIVE 0.42 � 0.05 0.39 � 0.05
RETURN 0.50 � 0.07 0.43 � 0.02

Intertrial interval, s
ENDPOINT 2.13 � 0.44 1.94 � 0.35
ONLINE 1.93 � 0.23 2.04 � 0.24
CORRECTIVE 2.04 � 0.39 1.81 � 0.23
RETURN 2.44 � 0.40 2.10 � 0.25

Total curvature, cm2

ENDPOINT 15.5 � 6.97 12.2 � 8.20
ONLINE 3.12 � 1.60 5.69 � 5.47
CORRECTIVE 40.9 � 21.9 48.9 � 82.2
RETURN 39.8 � 32.5 22.7 � 20.4

Heading angle, °
ENDPOINT 0.21 � 0.82 �0.06 � 1.22
ONLINE 1.23 � 1.75 0.84 � 1.78
CORRECTIVE 0.67 � 1.24 0.99 � 1.07
RETURN 1.96 � 1.13 1.45 � 0.99

Rotation training
ENDPOINT �25.8 � 3.04 3.98 � 3.24
ONLINE �25.3 � 1.68 2.84 � 1.37
CORRECTIVE �23.0 � 1.65 2.35 � 0.97
RETURN �24.2 � 1.64 2.07 � 0.76

Means and 95% confidence intervals of the mean are reported. Movement
time, intertrial interval, movement curvature, and heading angle are shown for
each group during the baseline phase, with and without endpoint feedback
(FB). Learning rate and final asymptotic value are based on exponential fit of
the adaptation curve in the rotation training block.

Fig. 2. Heading angle relative to target direction during baseline (trials 1–96),
rotation (97–136), test (137–226), and no-feedback (227–266) blocks. Colors
correspond to the 4 groups: ENDPOINT (blue), ONLINE (cyan), CORRECTIVE
(purple), RETURN (red). Movements to the training target location are filled
circles, and movements to the other locations are open circles.
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trained location. Across all four groups, generalization was
larger at the 135° location compared with the other two
locations. The group � probe location interaction was not
significant (F1,9 � 0.49, P � 0.81). To determine whether
these results may be driven, at least in part, by differential
group biases in the second baseline block (where feedback and
no-feedback trials were interleaved), we subtracted the average
heading angle in the baseline block from the average heading
angle in the test block for each target location. Similar to the
uncorrected analysis, the effects of group (F3,36 � 6.67, P �
0.004) and probe location (F2,72 � 4.77, P � 0.01) were
reliable after this correction, and the interaction was not sig-
nificant (F1,9 � 0.47, P � 0.83).

Figure 4 displays the group means of the heading angles
for the training location and probe locations. For the latter,
we averaged across the three probe locations, given that the
interaction term was not reliable and the direction of the
generalization was internally consistent within each group.
While all four groups showed similar changes in heading
angle at the trained location, reflecting consistent adapta-
tion, these summary data make clear the qualitative differ-
ences in generalization between the groups. The mean
heading angles are in the opposite direction of the rotation
for the two groups that were not required to hit the target
(ENDPOINT and ONLINE). In contrast, the heading angle

was in the direction of the rotation for the group that had
feedback during the outbound and return phases of the
movement (RETURN). As can be seen in the individual data
in Fig. 4, there was little overlap in the generalization values
between the groups.

During the no-feedback block, feedback was never presented
and movements were made to all eight locations, allowing a probe
on full generalization in the absence of error-driven learning.
Figure 5 shows the average trajectories across participants, based
on the first movement to each target during the no-feedback block.
These trajectories were used to generate the generalization
functions depicted in Fig. 8, with which the model was trained
to fit. All four groups show similar generalization for targets
near the training location (for locations 45° and �45°: group
F3,36 � 1.01, P � 0.39; location F1,36 � 0.01, P � 0.97;
interaction F1,9 � 0.26, P � 0.85). No generalization was
observed at the vertical locations (90° and �90°: group F3,36 �
0.06, P � 0.98; location F1,36 � 2.04, P � 0.16; interaction
F1,9 � 0.79, P � 0.50). For targets far from the training
location, the no-feedback block results were similar to those
observed in the test block, although the location effect was no
longer significant (locations 135°, 180°, and �135°: group
F3,36 � 7.93, P � 0.0001; location F2,72 � 2.03, P � 0.14;
interaction F1,9 � 0.38, P � 0.88). We expected that general-
ization would be somewhat attenuated during the no-feedback

Fig. 3. Hand trajectories during the baseline
block (black) and test block for the 4 groups:
ENDPOINT (blue, A), ONLINE (cyan, B),
CORRECTIVE (purple, C), RETURN (red,
D). During the baseline block, feedback was
provided at all locations. During the test
block, feedback was provided on trials in
which the target appeared at the training loca-
tion. No feedback was provided on trials in
which the target appeared at probe locations.
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block given that there should be decay of adaptation with
repeated movements without visual feedback.

Modeling. The radial basis function model (Eqs. 1–9) was
used to simulate reaches during the baseline, rotation, test, and
initial cycle of the no-feedback blocks. The parameters of the
model were fit with a nonlinear least-squares approach, mini-
mizing the average target error for each of the four groups
during the first cycle of the no-feedback block. The model was
initialized with randomized weights and trained for 96 move-
ments, reaching to each target 12 times in the absence of a
rotation. A separate weight matrix was used for each group;
thus the weight matrices could differ at the start of the rotation
training block. The error signal(s) were used to adjust the
weight matrix, and by the end of the simulated movements in
the baseline block the model was successful in reaching to
each target with essentially no error (see Fig. 7). Note that
while having different randomized weights, the models for
the ENDPOINT and ONLINE group conditions converged
because they are trained with the same outbound error and
are not influenced by the corrective/return error term.

After the baseline block, the rotation was imposed for 40
trials, with all reaches limited to the training direction (0°). The
model rapidly learned to adjust the heading angle to compen-
sate for the rotation (Fig. 6). To simulate the test block, the
rotation remained in place on trials in which the target appeared at
the training location and the observed errors were used to update
the weight matrix. Updates were not made after reaches to the
probe locations since feedback was withheld on these trials. After
the test block, the weight matrix was fixed and movements to each
target were simulated to assess generalization at all target loca-
tions (1 cycle of the no-feedback block). Thus the model simu-
lated the time series of reaches throughout every block, including

the rotation and test block, as well during the first epicycle of the
washout block.

By the end of this simulated training, the model’s trajecto-
ries for the ENDPOINT and ONLINE conditions are identical
since they use the same error, and closely match the hand
trajectories for each group (Fig. 7). The generalization function
for these groups provides an excellent match to the data (Fig. 8;
Table 2). Significant generalization is observed at �45°/
�45°, the targets near the training direction, and the pattern
here is very similar across the four groups. Little general-
ization is observed at �90°/�90°. Generalization at these
locations is primarily driven by the width of the basis
function. The estimated value of this parameter (�) was 16°,
a value that is slightly narrower than previously estimated
(Tanaka et al. 2009).

Generalization is not only driven by the width of the neural
tuning function but also dependent on baseline activity of the
simulated units (Ingram et al. 2011; Thoroughman and Taylor
2005). The estimated baseline activity was quite small (a �
0.04). Nonetheless, this small level of activity was sufficient to
produce some degree of generalization at all locations. Impor-
tantly, the positive baseline activity produces generalization in
a direction consistent with a Cartesian representation of the
error, not in a rotational frame of reference. Thus the
positive baseline activity produces the downward general-
ization at the probe locations for the ENDPOINT and
ONLINE conditions (Fig. 7).

The positive baseline activity will also produce downward
generalization effects for the CORRECTIVE and RETURN con-
ditions. However, the generalization pattern for these groups is
also influenced by the second error term used to guide the
movements to the target and/or start location. That is, the weights
for the RETURN and CORRECTIVE models are adjusted twice
on each trial, once based on the outbound error and a second time
based on the return movement error. The inclusion of this second
error term led to very different patterns of generalization com-
pared with those observed for the ENDPOINT and ONLINE
groups (Fig. 7). In particular, for the 180° direction, the trajectory
was now shifted in the same rotational direction as at the training
location. Note that the effect of this second error term counteracts
the direction of generalization induced by the positive baseline
activity.

For the CORRECTIVE and RETURN conditions, we had to
specify the direction of the corrective movement (�n

corrective). The
best fit for both groups arises when the planned direction at the
time of the second error update is 180°. When other directions
were considered, such as �90° and �135°, the fits of the gener-
alization curves for other directions of the corrective movement
were much poorer [e.g.,�180°: root mean square error (RMS) �
1.99; �90°: RMS � 2.12; �135°: RMS � 2.91]. The 180°
direction seems reasonable for the RETURN group, since these
participants must move in this general direction to return to the
start location. It is more surprising that 180° value also provides
the best fit for the CORRECTIVE group, since movements in this
direction would only occur when the participants overshot the
target. Participants in the CORRECTIVE group did overshoot
early in rotation training, with the mean amplitude 0.8 � 0.02 cm
beyond the target during the first eight reaches to the training
location. This tendency decreased over the course of training, with
the mean overshoot only 0.07 � 0.006 cm over the last eight
movements of rotation training (t9 � 5.50, P � 0.001).

Fig. 4. Group-averaged heading angles (bars) relative to target direction for
movements to the training and probe locations in the rotation block. Dots indicate
individual participant values. Colors correspond to the 4 groups: ENDPOINT
(blue), ONLINE (cyan), CORRECTIVE (purple), RETURN (red).
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We allowed the model to estimate separate learning rates for
the second error signal for the RETURN and CORRECTIVE
groups given that these error signals were used for different
purposes. Three points are of note here. First, the learning rates
for the second error signal are considerably smaller than the
learning rate for the outbound error signal, presumably reflect-
ing the fact that the compensation for the rotation is based on
an error associated with the initial heading direction. Second,
the estimated learning rate for the RETURN group is larger
than that estimated for the CORRECTIVE group, perhaps
because of the large error that occurs when the heading for the
return movement is again perturbed by the rotation. Third, the
inclusion of separate learning rates for the second error signal
provided a much better fit of the generalization function.
Overall, the full five-parameter model provides an excellent fit
of the generalization function for these groups (Fig. 8; Table
2), accounting for 61% of the unexplained variance from the fit
obtained with a simpler three-parameter model (from r2 � 0.89
to 0.96 in the CORRECTIVE condition and from 0.89 to 0.93
in the RETURN condition).

Experiment 2

A central feature of the model is that the current error
information is used to modify the synaptic weights of the
network elements in a manner proportional to the level of

activity of the directionally tuned units that are active at the
time of the update. When the movement is made with end-
point-only feedback, only units tuned to the direction of the
target are significantly activated, and thus error-based training
is specific to those units. However, when corrective move-
ments are made, or when feedback is provided when the
participant returns to the start location, units tuned in other
directions can be active, resulting in training in those directions
leading to what would be measured as a change in generaliza-
tion. Thus the pattern of generalization will depend on the
range of units that are activated when feedback is available.

This architecture predicts that the generalization function
should be modified if the set of training locations is increased.
Moreover, the form of this function should be modified in a
specific manner. Consider a condition in which the training set
includes two locations, 0° and �45°, and feedback is provided
on the outbound and return movements. Adaptation not only
should be observed for movements around these two training
locations but also should be evident during generalization for
movements to targets at 180° and 135°, the movement direc-
tions that are required to return to the start location.

We simulated this two-training target condition, using the
model parameters for the RETURN condition from experiment
1. During the training block, the model used outbound errors
generated for reaches to the 0° and �45° target locations and

Fig. 5. Hand trajectories during the baseline
block (black) and the first cycle of the no-feed-
back block for the 4 groups: ENDPOINT (blue,
A), ONLINE (cyan, B), CORRECTIVE (purple,
C), RETURN (red, D). Movements were made
to all 8 locations without feedback.
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return errors for reaches toward the start location, movements
that involved trajectories that corresponded to those required
for reaches in the direction of the 180° and 135° targets. The
model readily adapted to both training locations. Importantly,
the model showed similar generalization around the 180° target
and the 135° target (Fig. 9A). Thus not only is the spread of
generalization larger when there are two targets compared with
training at only a single target (Fig. 9A), but the form of
generalization was in a specific manner for targets distant to the
training locations. To confirm that this change in the general-
ization function was not simply due to training at two loca-
tions, we simulated a two-target condition in which feedback
was only given at the endpoint of the outbound movement,
using here the model parameters from the ENDPOINT condi-
tion of experiment 1. For this simulation, the model predicted
a very different pattern of generalization, similar to that pre-
dicted when only one training target is used (Fig. 9B).

To empirically test this prediction, we recruited two more
groups of participants who were presented with targets at two
locations during the rotation phase. One group was provided
with continuous online feedback during both the outbound
movement and the return (RETURN-TWO group), whereas the
other group only received feedback at the end of the reach
(ENDPOINT-TWO group), Both groups adapted to the rota-
tion at both training locations (Fig. 10A). However, they
exhibited very different patterns of generalization during the
test block (Fig. 10, B and C). The RETURN-TWO group

showed generalization in the clockwise direction (rotational
reference frame), and the magnitude of this effect at the 135°
location is larger than that observed for the RETURN group
from experiment 1 (Fig. 10B; t18 � 3.10, P � 0.006). In
contrast, the ENDPOINT-TWO group showed generalization
that was similar to that observed in the ENDPOINT group from
experiment 1 (compare Fig. 3A and Fig. 10C). In particular, the
generalization at the probe locations was in the CCW direction
(or downward). No differences were observed between the
ENDPOINT-TWO (experiment 2) and ENDPOINT (experi-
ment 1) conditions in a between-experiment comparison (t18 �
0.62, P � 0.55). In summary, the observed results closely
conform to the predictions of the model.

DISCUSSION

In previous studies of visuomotor rotation, generalization
has been found to be in the same angular direction of the
rotation, leading to the idea that participants develop an inter-
nal model of the perturbation (Krakauer et al. 2000; Pine et al.
1996). In the present study, we find that the shape of the
generalization function is strongly influenced by the type of
visual feedback provided during adaptation. When participants
were required to make online corrections to terminate the
movement within the target (and during a return movement to
the starting location), the pattern of generalization near the
training location and at far locations was consistent with the
hypothesis that participants had indeed learned a rotational
transformation. However, the generalization function was not
monotonic, with minimal evidence of learning at directions
orthogonal to the training location. Even more striking, when
online corrections were not required the angular direction of
the generalization function was reversed: Heading errors at
these locations were in the opposite direction of the rotation, a
pattern consistent with generalization in an exocentric refer-
ence frame. These different task demands yielded subtle yet
important differences, leading us to reconsider the processes
that drive generalization.

We were able to capture these discrepant patterns of gener-
alization in a unified model that emphasizes the important
contribution of error information for adjusting the output of
movement units defined by a radial basis function network
(Tanaka et al. 2009; Thoroughman and Shadmehr 2000; Thor-
oughman and Taylor 2005). Generalization was defined by
three components: 1) the neural tuning width, 2) neural base-
line activity, and 3) the error signals experienced by the system
during adaptation (Fig. 11). In previous computational studies
of generalization, the focus has been on the first two factors
that define the shape of the tuning function. Different patterns
of generalization observed across several task domains (e.g.,
rotations, translations, gain changes) have been attributed to
differences in the shape of the tuning functions (Ghahramani et
al. 1996; Pearson et al. 2010; Tanaka et al. 2009; Thoroughman
and Taylor 2005). We find that careful consideration of the
error signal is sufficient to account for qualitative changes in
generalization without requiring variation in the shape of the
tuning function. Indeed, applying a consistent set of principles
across task conditions can yield different patterns of general-
ization from a uniform set of tuning functions, a desirable
feature given that the basic task—adaptation of a sensorimotor
map—remains constant. Thus differences in generalization

Fig. 6. Model simulation of training in each feedback condition. The weights
were initially randomized and the model learned to reach to each target with
feedback in the baseline block. During the rotation block, the model learned to
compensate for the rotation (3 colored dashed lines are superimposed). Probe
targets (colored solid lines) were introduced during the test block (movements
137–226). No-feedback block (open circles) was limited to 8 movements (1 per
target) since the model was now stable, given the absence of feedback. Blue,
ENDPOINT; cyan, ONLINE; purple, CORRECTIVE; red, RETURN. Note
that the ENDPOINT and ONLINE groups overlap completely after the training
block.
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need not be attributed to differences in the neural representa-
tion per se, but rather reflect constraints imposed by the
available error information.

Recent work by Brayanov and Smith (Brayanov et al. 2011)
has suggested that generalization functions reflect the compos-
ite operation of two processes. One process is local in nature,
limited to directions similar to the training direction(s), and is
manifested in a Cartesian reference frame. The second process
is global, affecting all directions, and is manifested in a
rotational reference frame. This two-process model is at odds
with our model in that we postulate a single process, one in
which the units code movement direction in a rotational space
but receive an error that is based in a Cartesian reference
frame. However, as emphasized in the present study, it is
important to consider the type of feedback presented during the
training phase. Brayanov and Smith (Brayanov et al. 2011)
provided online feedback throughout the movement, requiring
the cursor to land in the target region. This form of feedback will
provide error information at multiple states, depending on the
duration of the movement. This is similar to our CORRECTIVE
group (or our RETURN group), where we see either no
generalization or rotational generalization at targets far from
training. Any differences in our CORRECTIVE group and the
work by Brayanov and Smith (Brayanov et al. 2011) could be
due to differences in the speed of movements, the time allowed
for online corrections, and how generalization is tested during

training. Participants receive error feedback at many states
(positions) during the corrective feedback portion of the move-
ment, and, according to our model, these additional states
during this period also contribute to learning, thereby leading
to differences in generalization. Thus any test of generalization
may be contaminated by error-based feedback if it is available
during training. The pattern of generalization will be different
depending on the number of states that are visited and the
duration of the reach that involves traveling through states that
are not directed toward the target.

Tuning Functions Limit Degree of Generalization

Prior studies have generally observed relatively narrow gen-
eralization functions. Substantial generalization is observed
near the direction of training, and falls off rapidly as the
direction of probe movements deviates from the training di-
rection (Krakauer et al. 2000; Tanaka et al. 2009). The shape of
this generalization function has been attributed to the shape of
neuronal tuning functions in a radial basis function network
(Thoroughman and Shadmehr 2000). These functions can be
approximated by a Gaussian, tuned to movement velocity (or
direction). The output of the network is the weighted sum of
these velocity-tuned units, the population vector (Georgopou-
los et al. 1986). When a perturbation is introduced, the weights
are adjusted based on an error signal defined by the difference

Fig. 7. Model simulation of hand trajectories
during the baseline block (black) and no-feed-
back block for the 4 groups: ENDPOINT
(blue, A), ONLINE (cyan, B), CORRECTIVE
(purple, C), RETURN (red, D).
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between the planned and observed direction of movement.
Stable performance is achieved with a gradient-descent learn-
ing rule in which the weights are adjusted proportionally to the
size of the error and the unit’s level of activity.

In such models, the extent of generalization is constrained
by the standard deviation or width of the Gaussian function
(Fig. 11). Thus weight adjustments are limited to units that
were active during the movement. If the width of the Gaussian
function is large, more units will be active for any given
movement and, as a consequence, generalization will be broad.
If the width of the Gaussian function is small, only a few units
are active during each movement and generalization is narrow.

Previous studies have suggested that the widths of the tuning
functions are relatively narrow, with estimates ranging from
20° to 30° (Tanaka et al. 2009; Thoroughman and Shadmehr
2000). These estimates suggest that generalization should be of
limited extent. While the generalization function does fall off
rather sharply from the training direction (e.g., 50% reduction
at angles � 20°), most studies have also observed some degree
of generalization at directions far from the training location
(Krakauer et al. 2000; Pine et al. 1996; Tanaka et al. 2009).
One proposal to account for distant generalization involves the
use of more complicated tuning functions such as a cosine-
tuned function or one involving a difference of Gaussians
(Thoroughman and Taylor 2005). Functions such as these have
been identified in the motor cortex (Georgopoulos et al. 1982),

cerebellum (Coltz et al. 1999), and visual cortex (Hubel and
Wiesel 1959). An alternative hypothesis is that different sub-
populations of neurons have different tuning functions and
during learning error signals are used to select the appropriate
subpopulations (Thoroughman and Taylor 2005). Both of these
hypotheses require sophisticated neural circuitry for tuning
selection, and, to date, empirical support for such a learning
process has not been identified. While there is evidence of
experience-dependent changes in the preferred direction of
motor cortex cells (Gandolfo et al. 2000; Paz and Vaadia 2004;
Taylor et al. 2002), consistent changes to the shape of the
tuning function have not been identified.

Baseline Activity Produces Weak, but Broad, Generalization

We opted to take a different approach here. We assumed that
the units could be represented as directionally tuned Gaussian
functions with a fixed tuning width (Tanaka et al. 2009). As
noted above, this model easily captures the fact that general-
ization is largest around the trained direction. In addition, we
found that a parameter representing (nonzero) baseline neural
activity was sufficient to produce a modicum of generalization
at distant locations (Ingram et al. 2011; Thoroughman and
Taylor 2005). Importantly, this baseline activity does not
predict generalization in a rotational frame of reference, but
rather in a direction consistent with a Cartesian representation

Fig. 8. Model fit of generalization function:
average heading angle of the hand at each
target location (black circles and solid lines)
for each group and the model’s heading angle
(dashed line). A: EF group (blue). B: OF group
(cyan). C: CF group (purple). D: RF group
(red).
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of the error. The presence of baseline activity was critical in
reproducing the generalization patterns observed for the ENDPOINT
and ONLINE groups.

It is unclear whether baseline activity should be considered
a feature of the tuning functions of the neurons or a distinct,
separate process. It is possible that the generalization effects at
distant locations reflect the operation of a second learning
process. That is, the generalization function may be the com-
posite of locally adapted basis tuning functions and a second
generic, albeit weaker, process that is applied to all units
(Pearson et al. 2010). This generic process may reflect the
effects of learning at a more abstract level such as an adjust-
ment in a motor plan (Fig. 11). For example, after seeing that
movements to the training location consistently result in an
upward error, the participant may be biased to move in the
downward direction, a bias that could be broadcast uniformly
across all movement directions.

The baseline parameter was fixed for all four groups. While
the model with this term was sufficient to account for gener-

alization in the ENDPOINT and ONLINE groups, it failed to
provide an adequate fit for the CORRECTIVE and RETURN
groups. For these groups, generalization was either minimal at
all distant locations or in a direction consistent with the
rotation. If the baseline activity were the sole source of the
distant generalization, it would be necessary to postulate that
baseline activity is influenced by the task demands. As an
intrinsic feature of the tuning functions, the baseline activity
would have to be subject to some form of experience-depen-
dent plasticity to account for the group differences. Alterna-
tively, if the baseline activity represented a separate process
that provided a generic error signal, we would have to propose
that this signal varied between groups. This seems unlikely,
given that all of the groups were trained with the same target
and showed very similar adaptation at this location.

Importance of Error Signals During Training

To account for the group differences in generalization, we
explored the influence of error information, a feature of the
model that builds naturally on the different task demands
imposed on the four groups. As in standard models of adapta-
tion, the units in our model were updated by an error signal,
representing the difference between the desired and actual
movement. However, the task demands were more stringent for
the CORRECTIVE and RETURN groups. For the former, the
movement had to terminate in the target location; for the latter,
feedback was also available when the participant returned to
the start position. The feedback available to guide these cor-
rections not only provides a source of additional error infor-
mation but also is utilized at a time when the dynamics of the
network has changed: The pattern of activation across the units
in the neural network is altered and, as such, has altered the
landscape in terms of which units are eligible for updating. We
modeled this by introducing a second error-updating epoch for
these two groups. The inclusion of this additional error term
was capable of generating the generalization curves exhibited
by the CORRECTIVE and RETURN groups. The parameter
estimates suggest that the error information used for the second
update is not as salient for the CORRECTIVE condition
compared with the RETURN condition. Note that this differ-
ence is how the model accounts for the difference in general-
ization between the two groups; as such, it cannot be said to be

Table 2. Parameter estimates and model fits for each group
based on the basis function model (Eqs. 1–9)

RMS r2

Model parameters
a 0.04
�, ° 16
�outbound 0.18
�corrective 0.0007
�return 0.0017
�corrective, ° 180
�return, ° 180

Model fit
ENDPOINT 1.68 0.98
ONLINE 1.50 0.98
CORRECTIVE 1.99 0.96
RETURN 2.40 0.93

a, Baseline neural activity; �, width of the basis function; �outbound, learning
rate for the outbound portion of the movement, constrained to be identical for
all 4 groups; �corrective and �corrective, learning rate and desired angle of
movement for the corrective portion of the movement for the CORRECTIVE
group; �return and �return, learning rate and desired angle of movement for the
return portion of the movement for the RETURN group. Fits were quantified
by 2 measures, root mean square error (RMS) and the correlation coefficient
(r2) between the model simulation and group-averaged heading angle during
the no-feedback block.

Fig. 9. Predicted hand trajectories from the
model during the baseline block (black) and
no-feedback block for conditions in which 2
targets are used during the training block with
either online feedback during the outbound
and return phases (RETURN-TWO, orange;
A) or endpoint-only feedback (ENDPOINT-
TWO, purple; B). The predictions were de-
rived by using parameters estimated from the
data fits for experiment 1 when only 1 target
had been used during training.
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an “explanation.” Nonetheless, the model clearly demonstrates
how generalization is influenced by the form of the error
information.

We recognize that our discrete use of feedback information
is a simplification. Differences between the observed and
simulated data, especially for the return condition, may be due
to undersampling of the error signal given that we limited the
updating process to two time points. We expect that the fits
would improve if we used more time points. While error
information is continuously available, it remains to be seen
whether updates to the motor commands are provided in a
continuous or discrete manner (Flash and Henis 1991; Ijspeert
et al. 2002). The point we wish to emphasize here is that the
inclusion of error signals that conform to the basic task de-

mands was sufficient to produce qualitatively different gener-
alization functions. For all four groups, the outbound error
adjustment was based on an error defined by the initial heading
direction (measured between 1 and 3 cm; see MATERIALS AND

METHODS). For the CORRECTIVE and RETURN groups, the
second error adjustment was applied when the movement was
heading in the reverse direction (180°, based on the model fits).
We were surprised to find that the best fit for the CORRECTIVE
group was obtained when the second error adjustment was
applied to units generating trajectories in the 180° direction. A
priori, we expected that, given the rotation, the 90° or 135°
directions would be more relevant for this group. If the second
error term had updated units producing trajectories in these
directions, then significant generalization should have been
observed for reaches to targets at these directions, a result that
was not present in the participants’ generalization curves. It is
possible that the return movement, with its prominent 180°
direction, is especially salient given the need to return to the
center location before the next trial. This may produce a greater
emphasis on this direction for error updating. Alternatively,
error information may be delayed with respect to the units that
were responsible for the errors. If this information was not
properly maintained in memory, then the system could misap-
ply the error information. Thus recent errors in a particular
direction may be used to update units specifying the current
direction, resulting in the wrong errors being applied to the
wrong units.

Nevertheless, the present data fits and simulations show that
using just two error updates, one for the outbound phase and a
second for the return phase, can lead to qualitative changes in
the generalization function. This point is underscored by the
results of experiment 2, where we observed a change in the
generalization at specific locations, distant from the training
locations. Thus a simplified model in which the utilization of
error information is likely sparser than in reality was sufficient
to predict the general shape of generalization functions; we
assume that a more realistic model would provide even better
quantitative fits to bolster these qualitative observations. An
important implication of our work is that it may be a misnomer
to refer to the trajectory changes for movements to probe

Fig. 10. A: heading angle relative to target direction during baseline (trials 1–96), rotation (97–136), test (137–227), and no-feedback (228–266) blocks. The
ENDPOINT-TWO group is in blue and the RETURN-TWO group in orange. Movements to the training target location are filled circles, and movements to the
other locations are open circles. B and C: RETURN-TWO group (B) and ENDPOINT-TWO group (C) hand trajectories during the baseline block (black) and
test block. As in experiment 1, feedback was only provided when the target appeared at the 2 training locations (green) in the test block.

Fig. 11. Schematic activity level of directionally tuned units during the
outbound (blue) and return (red) phases of a movement to the training target
(0°). The generalization function is determined by 3 components: baseline
activity (a), tuning width (�), and modification of the weights determining the
contribution of each unit to the population vector. These weights are updated
based on an error signal generated during the outbound phase of the movement
for all groups and the return phase for the CORRECTIVE and RETURN
groups.
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locations as “generalization,” at least for the RETURN groups.
Generalization implies that a behavioral change is the result of
learning a particular task or movement. As the modeling work
presented here makes clear, the behavioral changes at probe
locations for the RETURN group are the result of a directed
movement toward the starting location. Prior studies of gener-
alization have tended to use tasks in which visual feedback was
continuously available. As shown here, generalization in these
studies is “contaminated” by the utilization of error informa-
tion during both the outbound and return phases of the move-
ments. Most importantly, the modeling work makes clear that
we need not assume different representations to account for
task-dependent differences in generalization. Rather, a parsi-
monious account of these differences is possible when consid-
eration is given to the error information available during
learning.
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