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CHAPTER 23
Trial-by-trial motor adaptation: a window into
elemental neural computation
Kurt A. Thoroughman�, Michael S. Fine and Jordan A. Taylor
Department of Biomedical Engineering, Washington University, 1 Brookings Dr., Saint Louis, MO 63130, USA

Abstract: How does the brain compute? To address this question, mathematical modelers, neurophysio-
logists, and psychophysicists have sought behaviors that provide evidence of specific neural computations.
Human motor behavior consists of several such computations [Shadmehr, R., Wise, S.P. (2005). MIT Press:
Cambridge, MA], such as the transformation of a sensory input to a motor output. The motor system is also
capable of learning new transformations to produce novel outputs; humans have the remarkable ability to
alter their motor output to adapt to changes in their own bodies and the environment [Wolpert, D.M.,
Ghahramani, Z. (2000). Nat. Neurosci., 3: 1212–1217]. These changes can be long term, through growth and
changing body proportions, or short term, through changes in the external environment. Here we focus on
trial-by-trial adaptation, the transformation of individually sensed movements into incremental updates of
adaptive control. These investigations have the promise of revealing important basic principles of motor
control and ultimately guiding a new understanding of the neuronal correlates of motor behaviors.
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Introduction

Despite the centrality of motor learning to basic
and clinical neuroscience, we know very little about
the quantitative role neural systems play in human
motor behavior (Flash and Sejnowski, 2001).
Motor behavior, of the hand and arm in particu-
lar, consists of many mathematical problems that
the central nervous system solves effortlessly.
Many reaching tasks seem only positionally de-
pendent; bringing a glass to one’s mouth, shaking a
friend’s hand, and writing with a pen all require the
identification and acquisition of arm and hand
placements. But this oversimplified positional
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description belies the complexity of these move-
ments, because desired positions must be related to
the velocities, torques, and forces necessary to ex-
ecute the movement (Atkeson, 1989). For every
desired movement of the arm, the central nervous
system somewhere needs to calculate the motor
neuronal activity appropriate to generate the mus-
cle forces necessary to actuate the movement. The
dynamic equations necessary to move an unen-
cumbered arm are very complex (Chan andMoran,
2006); adding the interaction forces of manipulated
objects makes the calculations even more daunting.
Motor learning of external dynamics

In the mid 1990s two research groups (Brandeis
and MIT) discovered that important properties of
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human motor behavior could be discovered by
bypassing the complexities of natural arm move-
ments and adding externally generated, novel
dynamic demands. The Brandeis group (Lackner
and Dizio, 1994) generated these novel forces by
seating participants in the center of a rotating
room. When the room rotated at constant speed
and was dark, participants had no sensory percep-
tion that they were moving. When making outward
reaches, however, they experienced novel Coriolis
forces due to the interaction of the rotation and the
arm movement. Lackner and Dizio discovered that
even without visual feedback, participants could
adapt to the Coriolis forces to move straight to the
target. When the room stopped its rotation, parti-
cipants generated an after-effect, making pointing
errors opposing the direction of the initial error.
These after-effects demonstrated that people could
build a lasting adaptation to predictive force con-
trol over mere minutes of training in a novel dy-
namic environment.

The MIT group (Shadmehr and Mussa-Ivaldi,
1994) achieved similar results with a very different
paradigm. Shadmehr and Mussa-Ivaldi trained
participants to make reaching movements while
holding a robotic arm (termed a manipulandum)
that generated unusual velocity-dependent (viscous)
forces. As with the Brandeis findings, Shadmehr
and Mussa-Ivaldi observed that participants could
learn to counter the novel forces, and generated an
after-effect when the forces were removed. The
manipulandum, however, offered the flexibility
of removing the perturbation in single trials with-
in blocks of viscous force generation. Later,
Shadmehr and Brashers-Krug (1997) would use
the growth of after-effect magnitude as a novel
metric of force field learning and as evidence of
interference across training paradigms.

Shadmehr and Mussa-Ivaldi initially trained
participants to reach with their hands in front of
their torsos. They then asked if and how parti-
cipants transferred this motor memory when
controlling the robot with their arms outstretched,
lateral to their shoulders. Shadmehr and Mussa-
Ivaldi discovered that participants did transfer
learned dynamics to this new posture, as evidenced
by better-than-naı̈ve performance with the viscous
forces on, and lingering after-effects with the
forces off. The experimenters also altered the de-
pendence of the forces such that the viscosity was
related to either hand velocity or joint velocity;
upon changing postures, experienced forces there-
fore remained consistent in either hand coordi-
nates or joint coordinates. Participants performed
better when the forces were consistent in joint co-
ordinates, providing evidence that the motor mem-
ory was represented in terms of joint velocity.

The Brandeis and MIT experiments ushered in a
new subdiscipline of exploring motor learning via
the psychophysics of adapting to external dyna-
mics. Other studies have considered the transfer of
motor learning across postures (Shadmehr and
Moussavi, 2000), speeds (Goodbody and Wolpert,
1998), movement directions (Gandolfo et al., 1996),
tasks (Conditt et al., 1997), or from one hand to the
other (Criscimagna-Hemminger et al., 2003). Stu-
dies also considered possible interference across
learning multiple dynamic (force-generating) envi-
ronments (Brashers-Krug et al., 1996; Caithness
et al., 2004) or between learning visual and dynamic
perturbations (Tong et al., 2002). All these studies
provided behavioral evidence of motor memories
built over one or several training sessions.
Trial-by-trial adaptation in dynamic environments

This body of work characterized the temporal and
spatial properties of motor memories, but did not
consider the influence of individual movements on
motor adaptation. Motor adaptation was usually
investigated with blocks of movements in which the
dynamic perturbation was held fixed. This
design enabled a measure of the rise time and
asymptote of learning over many trials, as well as
the transfer of that memory to different times,
different movements, and different environments.
Since most paradigms kept the movement environ-
ment fixed, they could not identify how errors in a
single movement led to adaptation in the very next
movement. Some experiments interspersed catch
trials, single movements in which forces are unex-
pectedly removed, during training sets (Shadmehr
and Mussa-Ivaldi, 1994; Shadmehr and Brashers-
Krug, 1997), but did not examine how those catch
trials altered adaptation. The consensus was that
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since the catch trials were rare, they only subtly
affected adaptation over hundreds of movements
and could therefore be ignored in their contribu-
tion to adaptation.

Two groups, at Northwestern and Johns Hopkins,
provided novel analyses to begin the quantitative
investigation of motor adaptation across indivi-
dual trials. These new experiments focused on
protocols and analyses that shifted the focus away
from blocks of movements to the contribution of
individual experiences. The block design of pre-
vious protocols provided stable environments
from which to abstract relevant metrics. The trial-
by-trial approaches of the Northwestern and
Johns Hopkins groups altered the environmental
dynamics within training, therefore preventing the
settling of behavior into easily identifiable time
constants and asymptotes. At first glance this de-
sign would seem to obscure rather than illuminate
adaptive processes. The experimenter, however,
controlled the trial-by-trial sequence of experi-
enced forces. This sequence was later used as a
template to identify subtle changes in control fol-
lowing each force presentation. The totality of the
complete sequence of presentations and responses
gave the trial-by-trial approach the same interro-
gative power as block designs, but with the addi-
tional vantage point of identifying the immediate
transfer of sensory information into action.

The Northwestern group (Scheidt et al., 2001)
trained subjects to reach in a single direction, di-
rectly away from their bodies, while experiencing
forces whose strength was randomly drawn from a
distribution in each trial. Scheidt et al. found that
participants’ performance in a trial, as quantified
by maximal hand deviation, linearly depended on
forces experienced in that movement, and also on
forces and error experienced in the previous move-
ment. The overall learning over a training session
was found to consist simply of the summation of
these increments of adaptation.

The Johns Hopkins group (Thoroughman and
Shadmehr, 2000) did not draw forces from a dis-
tribution but rather reanalyzed previous data in
which participants learned a viscous environment
with occasional catch trials. New analyses shifted
the focus to adaptation across single trials, enabled
by the catch trial occurrences. Participants trained
in eight directions of movement, so these analyses
could newly investigate if and how incremental ad-
aptation generalized across movement directions.
The analysis of Thoroughman and Shadmehr re-
vealed that participants generalized sensed error to
improve subsequent control across many move-
ment directions.

A neural network model mimicked this genera-
lization if the force estimate relied upon neural units
broadly tuned to movement direction and speed.
This model exemplified a broader theory of neural
computation, that the weighted linear combination
of broadly tuned neurons allows for generalization
and that learning may occur solely in changing the
weights (Poggio, 1990). Further studies have indi-
cated that this broadly tuned neural network model
mimicked motor learning in several viscous envi-
ronments (Donchin et al., 2003) as well as position-
dependent environments (Hwang et al., 2003). The
constancy of this broad trial-by-trial generalization
supports the theory that fixed neuronal tuning sim-
plifies learning and, in motor adaptation, provides a
simple, consistent expectation of environmental
complexity (Pouget and Snyder, 2000).

In the aforementioned experiments, people
demonstrated trial-by-trial adaptation that de-
pended co-linearly on two factors: a signal propor-
tional to error, and a generalization of that error
across the movement space. We have recently re-
ported that both of these dependencies are not
fixed, but rather change as a function of short-term
experience; adaptation can be markedly dispropor-
tional and generalization can be narrow or broad
depending on short-term environmental experience.
Experience-dependent flexibility of error

generalization

Previous research has suggested that the extent of
trial-by-trial generalization remains fixed during
learning, which provides a stable adaptive plat-
form through which people can process sensed
signals into motor output. These experiments have
generated forces that mimicked natural environ-
ments in their low spatial complexity, where com-
plexity describes the change in force direction
across movement space. However, if forces change
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rapidly across movement space and the human
motor system generalizes broadly and remains
fixed, then generalization itself can be maladap-
tive. To directly test this theory, we (Thoroughman
and Taylor, 2005) trained human participants in
dynamics with low, medium, and high complexity,
as determined by the equations:

F ¼ �15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2

p � sinðmfÞ

cosðmfÞ

" #

f ¼ arctan
_y

_x

� � (1)

where _x; _y; and f are the Cartesian components
and direction of hand velocity. By increasing m,
the spatial complexity of the function mapping
velocity direction into force direction could be
varied (Fig. 1A–C). On different days, the force
direction was changed as fast (m ¼ 1; Field One),
twice as fast (m ¼ 2; Field Two), or four times as
fast (m ¼ 4; Field Four) as the velocity direction.
We found that people could learn all three envi-
ronments over training. Participants reached the
same degree of learning in Fields 1 and 2, while
slightly less learning occurred in Field 4.

Surprisingly, participants quickly changed the way
they adapted in each environment (Thoroughman
and Taylor, 2005). We quantified the trial-by-trial
generalization of error into adaptation (Fig. 1D)
by using a state-space model. A vector parameter
B determined the strength of adaptation depend-
ent on the angular separation (y) between the di-
rection of the movement in which error is sensed
and the direction of the next controlled movement.
Our parameterization did not capture a significant
trial-by-trial adaptation in Field Four; this may be
because learning plateaued early in this environ-
ment leaving little trial-by-trial signal throughout
the training sets. Trial-by-trial generalization in
Field One exhibited the strongest and broadest
generalization. The generalization function was
always positive, such that an error sensed in one
direction generated the same sign (positive or
negative) of adaptation in all subsequent move-
ment directions. For example, a rightward force
experienced while reaching away from the body
would generalize to an expectation of a right-
ward force, even while reaching toward the
right or toward the body. In contrast, Field Two
had a remarkably different shape; it was narrower
above the X-axis and featured negative compo-
nents in directions far away from sensed error. A
rightward force experienced while reaching away
from the body would not generalize to movements
toward the right, but would generalize to an
expectation of a leftward force for movements
toward the body (as BE0 for y ¼ 901 and Bo0 for
y ¼ 1801).

When the forces changed rapidly across move-
ment space, people changed the way they learned
the environment. This reshaping of motor adap-
tation suggests that people can rapidly change
their internal mapping of the movement space
that informs transformations of sense into action.
Coupled with our previous and current computa-
tional models and with prominent theories linking
neuronal tuning to generalization, we suggest
that the functional tuning of motor space may be
plastic, to induce either appropriately broad or
appropriately narrow trial-by-trial generalization.
Trial-by-trial adaptation in response to pulsatile
perturbations

While these studies quantified motor adaptation
across single trials, the continuous nature of the
perturbing force was ill suited to investigate how
different time points within individual movements
informed subsequent adaptation. By perturbing
participants with brief pulses of force, we recently
(Fine and Thoroughman, 2006) explored if and
how the feedback experienced at the beginning,
middle, or end of a single movement differentially
affected the control of the next movement.

Pulses were applied in 20% of movements,
either to the left or right, 2, 3, 4, 5, 6, or 7 cm into a
10 cm movement. Pulses were never experienced in
two consecutive movements. Prepulse movements
(movements immediately before a pulsed move-
ment) were relatively straight, curved only a cou-
ple of millimeters. The pulse significantly
perturbed these prepulse movements. Participants
adapted in movements immediately after pulsed
movements (termed postpulse movements). Par-
ticipants adapted to the left after rightward pulses
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and to the right after leftward pulses. Surprisingly,
the timing of postpulse adaptation did not depend
significantly on the position of the pulse; pulses
early, middle, and late in movement all altered
subsequent control from the very beginning of
the next movement. Postpulse trajectories also
followed similar paths; adaptation to leftward and
rightward pulses was statistically indistinguishable
regardless of the position of the pulse, whether
displacements were measured early, in the middle
of, or late in the postpulse movement.

We also investigated the dependence of postpulse
adaptation on the magnitude of the pulse. Arm
position error (Jordan and Rumelhart, 1992), stiff
and viscous feedback (Wolpert and Ghahramani,
2004), and predictive torque error (Jordan and
Wolpert, 1999) have all been hypothesized to drive
adaptation. All three of these hypotheses have, at
their core, an assumption that adaptation strives to
regress across experience to minimize the overall
magnitude of error. Even reinforcement learning
(Sutton and Barto, 1998), which lacks an explicit
training signal, presumes regression to drive per-
formance to an optimum. Each of these hypotheses,
then, requires the magnitude of adaptation to vary
proportionally with the magnitude of error. Current
state-space models have included this presumption
and have successfully reproduced human behavior
when people experienced novel force perturbations
throughout the extent of a movement.

We found that the human response to pulsatile
force perturbations, in contrast, contained no
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proportionality to any error signal. We tested par-
ticipants with force pulses of 70ms duration and 6,
12, or 18N peak force (Fig. 2A–C). Pulses were
again experienced 3, 5, or 7 cm into a 10 cm move-
ment, either to the left or the right. The error in-
duced by the forces sensibly scaled with the
magnitude of the perturbation. If the pulse pushed
participants to the left, they adapted to the right
in the very next movement; if the forces pushed
participants to the right, they adapted by moving
to the left. The size of the response, however, was
constant, regardless of the magnitude of the force
pulse (Fig. 2D–F).

Sensitivity to pulse direction, but insensitivity to
pulse magnitude, is most apparent by averaging
across pulse position, and plotting adaptation
against the direction and magnitude of the force
pulse (Fig. 3). This result was surprising, given the
proportional responses measured in novel dynamic
environments. This component of adaptation
therefore cannot scale with any previously hypoth-
esized error signal, nor can it depend on a real-
valued critical metric. The magnitude of the force
perturbations and positional errors were well
within the ranges experienced in previous studies
(e.g., Scheidt et al., 2001), so our categorical
result is very unlikely to arise due to saturation
effects. These results, when combined with previ-
ous studies, suggest that people can adopt different
modes of adaptation that either can or cannot scale
with error magnitude (Fine and Thoroughman,
2007). Both the transformation of error to adap-
tation and the generalization of error across
movement space can therefore change with the
environmental demands of a task.
Discussion

Monkey neurophysiologists have correlated the
activity of neurons in specific brain areas to many
different features of arm movement. Foundational
work identified a strong correlation between the
activity of primary motor neurons and the direc-
tion of arm movement (Georgopoulos et al., 1986).
More recent work has investigated how cortical
neurons predict both hand speed and movement
direction (Moran and Schwartz, 1999) and may
also encode several other movement parameters,
such as posture of the arm (Scott and Kalaska,
1997) or muscle force (Li et al., 2001; Sergio
et al., 2005). Activity of Purkinje cells in the
cerebellum, meanwhile, can not only correlate to
hand movement speed and direction (Coltz et al.,
1999), but also to joint position and muscle force
(Thach, 1978). The specific role of cerebral or
cerebellar activity in normal motor behavior
remains elusive largely due to the correlative
nature of these experiments, the high number of
neurons that participate in each movement, and
the continuous time series of a large number of
movement states (hand and joint position and
velocity; joint torque; muscle force) that can all
contribute to positive post-hoc correlations.

The goal of trial-by-trial analyses is to identify
the particular computations used by participants
to adapt across individual trials. These and further
studies will determine specific signal processing
computations that will provide neurophysiologists
with protocols with which they can identify the
specific contribution a particular brain area makes
to the trial-by-trial transformation of sense into
incremental adaptation.

Our two new results provide two examples of
possible experimental correlates. The observed ex-
perience-dependent narrowing or broadening of
trial-by-trial adaptation, when compared to theo-
ries of generalization, suggests that the neuronal
activities underlying adaptation change their
tuning with environmental demands. Neurophy-
siologists could train monkeys in similar environ-
ments first to confirm that non-human primates
replicate the flexibility in trial-by-trial behavior.
Neuronal recordings could then seek to identify
areas of activity that change their tuning to move-
ment direction when the environmental complexity
changes.

Our observed categorical adaptation to force
pulses, in turn, could be used to differentiate
areas that encode error from areas that encode
adaptation. The bevy of theories that posited a
linear relation between sensed error and incremen-
tal adaptation could never, because of the linear-
ity, dissociate error and adaptation encoding.
If monkeys replicate our human psychophysical
response to force pulses, mid-movement feedback
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responses to the pulses will scale with pulse am-
plitude, but adaptation in the next movement
will depend on the direction and not the magni-
tude of the pulse. Neuronal recordings could then
determine whether a particular brain region’s ac-
tivity responded in proportion to pulse magnitude
(as in Fig. 2A–C) or in response to direction but
not magnitude (as in Figs. 2D–F and 3). Activity
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that scaled with pulse magnitude would indicate
encoding of error; activity that responded to di-
rection but not magnitude would indicate encod-
ing of the incremental adaptation of subsequent
control.

In particular, the trial-by-trial approach corre-
lates well with established models of cerebellar
motor adaptation, models that to date have not
been tested with trial-by-trial analyses of arm
movements. These models have their origins in the
Marr notion of adaptation of parallel fiber
synapses onto Purkinje cells (Marr, 1969). The
foundational Marr hypothesis posits that synaptic
efficacy changes as a function of two terms:
an error signal, carried by the climbing fibers and
encoded as a difference in complex firing rates
from baseline, and the tuning curves of the parallel
fiber input. The climbing fiber input forms a global
error signal that might serve to change synaptic
efficacy in many parallel fiber synapses; synaptic
specificity comes via the dependency on the par-
allel input itself. Similar to a backpropagation
framework (Jordan and Rumelhart, 1992), the
synapse specificity enables the fine tuning of
synapses in proportion to their contribution to
the neuronal causation of the error. Recent neuro-
physiology has corroborated these theories; the
complex spikes of the Purkinje cells seem to en-
code sensory error signals in motor command co-
ordinates (Kawato et al., 1987; Kawato and Gomi,
1992). Neural correlates of this model have been
identified in ocular following response (Shidara
and Kawano, 1993; Gomi et al., 1998; Kobayashi
et al., 1998) and in arm movements (Gilbert and
Thach, 1977; Kitazawa et al., 1998).

The trial-by-trial approach enables a highly spe-
cific computational identification as it relies upon
individual errors as inputs and resultant move-
ment modifications as outputs. The careful ana-
lysis of current and emerging trial-by-trial
adaptation protocols will make possible the con-
struction of very precise hypotheses of neuronal
processing on four levels: the tuning of the sensory
representation, the representation of mid-move-
ment corrective control, trial-by-trial adaptation,
and the across-trial reshaping of that adaptation.
The specificity of the model predictions, trial-by-
trial monkey behavior, and the corresponding
neural activity will foster a careful identification
of the computations underlying sensorimotor
adaptation and will enable a richly supported,
biologically detailed integration of human psy-
chophysics, computation, and primate neurophys-
iology.
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